
A Simple Yet Effective Method Improving Graph Fingerprints
for Graph-Level Prediction

Jiaxin Ying∗
University of Michigan

Jiaqi Ma∗
University of Michigan

Qiaozhu Mei
University of Michigan

ABSTRACT
Graph fingerprints form an important group of graph represen-
tation methods and have been shown effective in graph machine
learning tasks. However, such methods usually first compute fea-
ture descriptors of nodes in a graph, and then average or sum over
them to obtain a graph-level feature descriptor. The simple pooling
methods tend to cause significant information loss in the graph-
level representation. Further, the computation of graph fingerprints
is mostly not parameterized and cannot be tailored for a super-
vised learning task. In this paper, we test a simple fuzzy histogram
approach that is applicable to a wide range of graph fingerprints.
Through extensive benchmark evaluation, we demonstrate that
this simple method significantly improves the supervised learning
performance with graph fingerprints, and achieves similar perfor-
mance with popular graph neural networks for graph classification,
while remaining computationally efficient. We suggest graph finger-
prints enhanced with the histogram approach should be considered
as strong baselines in the context of graph-level prediction tasks.
ACM Reference Format:
Jiaxin Ying, Jiaqi Ma, and Qiaozhu Mei. 2021. A Simple Yet Effective Method
Improving Graph Fingerprints for Graph-Level Prediction. In Proceedings of
GLB ’21: The Workshop on Graph Learning Benchmarks at the Web Conference
2021. (GLB ’21). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Graphs are a family of general representations of data and graph-
structured data are commonly observed in the real world. In the
area of machine learning (ML), the topological structures of a graph,
locally and globally, have been shown as useful features for many
prediction tasks. Taking examples in social network analysis, how
likely a user is willing to adopt a new product is related to the
structural diversity of their local neighborhood [25]; the popularity
of a Tweet is related to its global retweeting tree structure at an
earlier stage [11]. To better utilize the graph information in the
prediction tasks, there have been rapidly growing developments of
graph representation learning methods in recent years.

Graph fingerprints [3, 5, 18, 23, 24, 27] form an important group
of graph representation methods. Such representations usually
∗Both authors contributed equally. Emails: jiaxinyi@umich.edu, jiaqima@umich.edu.
Code available at https://github.com/jiaxinying/HistogramGraphFingerprints.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLB ’21, April 12–16, 2021, Online
© 2021 Association for Computing Machinery.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

first calculate a series of feature descriptors for each node, which
smoothly capture the graph properties at different granularities,
from local to global. The node features are then pooled together (e.g.,
by summation or average) to obtain the graph-level fingerprints.
While the graph fingerprints have been shown to provide decent
discriminative power for ML on graphs, there are two shortcomings
most of them suffer from. First, the simple pooling methods cause
significant information loss. Second, most graph fingerprints are
calculated by a fixed algorithm independent of the downstream ML
tasks, which prevent them from fully leveraging the label informa-
tion in a graph-level supervised learning.

Recently, Li et al. [10] propose to first calculate a histogram over
the node-level Heat Kernel Signature (HKS) [23]1, and then ap-
ply a convolution neural network (CNN) on top of the histogram
to obtain a parameterized graph fingerprint. This work examines
whether this histogram approach can be effectively applied to other
types of graph fingerprints. We also extend this approach by using
two variants of fuzzy histograms and try to further parameterize the
fuzzy histograms. The histogram approaches are simple, easy-to-
implement, and applicable to a wide range of graph fingerprints. We
implement both the (original) discrete histogram approach and the
extended fuzzy histogram approach on three types of graph finger-
prints, and evaluate them on popular graph classification datasets.
We demonstrate clear improvements of the histogram approaches
over the vanilla graph fingerprints. We also show that the improved
graph fingerprints achieve similar performance as graph neural
networks, with a better trade-off between model performance and
computational cost, which suggests graph fingerprints enhanced by
the histogram approaches should be considered as strong baselines
in the context of graph classification.

2 RELATEDWORK
2.1 Graph Fingerprints
There has been a large body of literature for graph fingerprints. The
Heat Kernel Signature (HKS) [23] is obtained by restricting the heat
kernel to the temporal domain while inherits rich information of
the heat kernel. NetLSD [24] computes both heat kernel and wave
kernel from the eigen-decomposition of the graph Laplacian. For
the purpose of graph comparison, NetLSD calculates graph embed-
dings from the trace of heat kernel or wave kernel. The trace of heat
kernel is equivalent to summing over the node-level fingerprints
of HKS. Verma and Zhang [27] discover family of graph spectral
distances (FGSD) and calculate f-spectral distance of two nodes
based on it. They further use 1-D histogram to process the distance
matrix to get the graph spectrum. de Lara and Pineau [3] propose
to use the spectral decomposition of graph Laplacian as a simple
and fast algorithm for graph-level classification tasks. Specifically,

1This is a type of graph fingerprint.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/jiaxinying/HistogramGraphFingerprints
https://doi.org/10.1145/nnnnnnn.nnnnnnn

GLB ’21, April 12–16, 2021, Online Jiaxin Ying, Jiaqi Ma, and Qiaozhu Mei

they set a hyperparameter 𝑘 and use the 𝑘 smallest positive eigen-
values for graph Laplacian and denote this embedding as spectral
features (SF). They also show that each eigenvalue of the Laplacian
has a natural physical interpretation, which corresponds to the
energy level of the nodes in the embedding space. Gao et al. [5]
introduce geometric wavelet scattering transform which generalize
(Euclidean) wavelet scattering transform [12] by applying a graph
wavelet transform on top of it. The proposed model sums wavelet
values at different scales and different orders, and concatenates
them to get graph-level fingerprint. Rozemberczki and Sarkar [18]
model the node-level feature descriptors, named FEATHER, with
a characteristic function defined by aggregating node features in
local neighborhoods. This fingerprinting method is able to effec-
tively leverage node attributes. To get graph-level representations,
they apply a mean or max pooling over the node-level fingerprints.
Most the aforementioned graph fingerprints except for a variant of
FEATHER are calculated independent of the downstream ML tasks
and the parametric variant of FEATHERwas only used in node-level
prediction tasks rather than graph-level prediction tasks. And all
of the above methods use relatively simple pooling methods trans-
forming node-level feature descriptors to graph-level fingerprints,
which suffer from significant information loss.

Li et al. [10] build on top of the node-level HKS with a discrete
histogram followed by a CNN. This work extends the histogram
approach by Li et al. [10] and apply it to more types of graph
fingerprints.

2.2 Graph Neural Networks
One of the most popular and fast growing family of methods
are graph neural networks (GNNs) [30]. The majority of existing
GNNs fall into the message-passing (MP) paradigm (e.g., GCN [7],
GAT [26], or GIN [28]). These MP-GNNs model the representation
of a node or a sub-structure of the graph by aggregating the fea-
tures of its neighbors through neural network layers. When applied
to complex graph-level prediction tasks (e.g., molecular property
prediction [13]), the design of MP-GNNs is often faced with the
trade-off between expressive power (as measured by Weisfeiler-
Leman (WL) test) and computational efficiency [13, 16, 28]. The
graph fingerprints, instead, are not limited by the WL expressive-
ness and serve as great alternatives for graph-level learning tasks.

3 THE HISTOGRAM APPROACHES
Suppose there is a graph with 𝑁 nodes. A graph fingerprint method
usually first calculates node-level feature descriptors, Φ ∈ R𝑁×𝑀 ,
where each row corresponds to a node. The 𝑀 columns usually
correspond to graph properties at different granularities, and there
is continuity between consecutive columns. To form a graph-level
representation that can be used in a downstream ML task, we need
to eliminate the dependence of 𝑁 . In most previous work [18, 24],
this is done by applying a simple pooling operation (sum, max,
or average) over the 𝑁 nodes, which inevitably causes significant
information loss. Li et al. [10] apply histograms with 𝐵 bins to
summarize the distribution of each column of Φ over the 𝑁 nodes,
resulting a histogram matrix 𝐻 ∈ R𝐵×𝑀 . A CNN is then applied
to 𝐻 as the rows and columns of 𝐻 respectively present inherent
continuity.

While Li et al. [10] only consider the HKS graph fingerprint,
we further examine other types of graph fingerprints. We also
generalize this histogram approach to fuzzy histograms. Formally,
suppose we are given a kernel function 𝑓 : R→ R+ satisfying∫

𝑓 (𝑥)𝑑𝑥 = 1,

∫
𝑥 𝑓 (𝑥)𝑑𝑥 = 0, and

∫
𝑥2 𝑓 (𝑥)𝑑𝑥 > 0.

Given 𝐵 pairs of location and scale parameters {(𝜇𝑏 , 𝜎𝑏)}𝐵𝑏=1, we
can calculate a fuzzy histogram 𝐻 ∈ R𝐵×𝑀 from the Φ, such that,
for any 𝑏 = 1, · · · , 𝐵, and𝑚 = 1, · · · , 𝑀 ,

𝐻𝑏𝑚 =

𝑁∑
𝑖=1

𝑓 (Φ𝑖𝑚 − 𝜇𝑏
𝜎𝑏

) .

In particular, the discrete histogram used by Li et al. [10] is a special
case when we choose a rectangular kernel 𝑓 (𝑥) = 1

21 [|𝑥 | < 1]
with proper location and scale parameters. In practice, we further
normalize 𝐻 by 𝐻𝑏𝑚 ← 𝐻𝑏𝑚∑𝐵

𝑑=1𝐻𝑑𝑚

. We also test various design
choices of fuzzy histograms as described below.
Kernel functions. We implement three types of kernel func-
tions: rectangular, Gaussian

(
𝑓 (𝑥) = 1√

2𝜋
exp(−𝑥2

2)
)
, and Silver-

man
(
𝑓 (𝑥) = 1

2 exp(− |𝑥 |√
2
) sin(|𝑢 |√

2
+ 𝜋4)

)
.

Parameters. The location and scale parameters can be either
treated as hyper-parameters or treated as learnable parameters
(except for the rectangular kernel function).
Initialization of parameters. By default, we set the hyper-parameters
(or initializations) of the location parameters uniformly for a given
range and set those of the scale parameters as constant. We also try
to set them by fitting a Gaussian mixture model from the node-level
feature descriptors.

More details of the approach can be found in Appendix A.

4 EXPERIMENTS
In this section, we present the benchmark experiments. Due to page
limit, some experiment details are left to Appendix B.

4.1 Methods for Comparison

Graph fingerprints. We implement the different variants of his-
togram approaches on three base graph fingerprints, NetLSD [24],
GeoScatteirng [5], and FEATHER [18]. We append -R, -G, and
-S to the base method to indicate the histogram approaches with
rectangular, Gaussian, and Silverman kernel functions respectively.
We further append an -L if the location and scale parameters are
learnable, and append an -I if they are initialized from a fitted
Gaussian mixture. When both -I and -L should be appended, we
simplify it as -IL. For example, “NetLSD-R” indicates applying the
histogram with rectangular kernel on NetLSD, while “FEATHER-
G-L” indicates applying the histogram with Gaussian kernel and
learnable location/scale parameters on FEATHER.
Graph Kernel Methods. We include three types of graph kernels
as our baseline models, shortest-path kernel (ShortestPath) [2],
Weisfeiler-Lehman subtree kernel (WL) [20] andWeisfeiler-Lehman
Optimal Assignment kernel (WL-OA) [9].

A Simple Yet Effective Method Improving Graph Fingerprints for Graph-Level Prediction GLB ’21, April 12–16, 2021, Online

Table 1: Performance on the real-world benchmark datasets. 10-fold cross-validation accuracy is reported on TU datasets, and
average AUC of 5 random splits is reported on Karateclub datasets. Bold entries indicate the best among all methods and
underlined entries indicate the best within the subgroup of methods. Some results are missing due to out of memory.

Method
TU Dataset Karateclub Dataset

MUTAG NCI1 PROTEINS IMDB-BIN IMDB-MULTI Deezer Egos Github StarGazers Twitch Egos Reddit Threads

Ke
rn
el ShortestPath 0.806±0.094 0.661±0.025 0.761±0.028 0.564±0.039 0.394±0.032 0.497±0.016 0.687±0.005 / /

WL 0.772±0.094 0.814±0.018 0.762±0.023 0.722±0.041 0.507±0.033 0.514±0.008 0.668±0.010 / /
WL-OA 0.856±0.087 0.854±0.019 0.754±0.039 0.729±0.040 0.497±0.028 0.506±0.003 / / /

M
P-
GN

N 1-GNN 0.672±0.127 0.677±0.023 0.725±0.040 0.728±0.048 0.486±0.036 0.510±0.021 0.693±0.011 0.720±0.001 0.837±0.003
GIN 0.783±0.085 0.719±0.026 0.726±0.044 0.733±0.029 0.491±0.051 0.526±0.005 0.748±0.008 0.722±0.002 0.843±0.002
1-2-3-GNN 0.828±0.081 0.756±0.025 0.755±0.035 0.716±0.031 0.497±0.033 0.522±0.006 0.777(0.004) 0.725±0.001 0.842±0.002

N
et
LS

D

NetLSD 0.761±0.086 0.610±0.016 0.729±0.051 0.61±0.035 0.462±0.049 0.527±0.005 0.630±0.010 0.630±0.003 0.818±0.001
NetLSD-R 0.839±0.085 0.725±0.033 0.740±0.063 0.723±0.034 0.493±0.053 0.529±0.007 0.713±0.005 0.721±0.001 0.838±0.002
NetLSD-G 0.839±0.071 0.711±0.023 0.746±0.030 0.692±0.030 0.475±0.034 0.522±0.004 0.712±0.003 0.720±0.001 0.837±0.001
NetLSD-S 0.872±0.053 0.705±0.023 0.743±0.035 0.709±0.051 0.466±0.052 0.517±0.006 0.709±0.005 0.719±0.001 0.836±0.001
NetLSD-G-L 0.806±0.088 0.708±0.023 0.746±0.039 0.716±0.046 0.479±0.052 0.518±0.005 0.715±0.003 0.719±0.0005 0.838±0.001
NetLSD-S-L 0.878±0.073 0.706±0.016 0.750±0.042 0.708±0.051 0.463±0.027 0.504±0.020 0.710±0.005 0.721±0.001 0.838±0.001
NetLSD-G-IL 0.844±0.073 0.710±0.028 0.751±0.051 0.715±0.036 0.501±0.068 0.526±0.006 0.723±0.007 0.719±0.002 0.838±0.001
NetLSD-S-IL 0.856±0.105 0.719±0.021 0.744±0.041 0.726±0.041 0.516±0.023 0.522±0.006 0.723±0.006 0.721±0.001 0.839±0.001

Ge
oS
ca
tte

rin
g

GeoScattering 0.817±0.075 0.509±0.038 0.600±0.040 0.715±0.050 0.446±0.058 0.535±0.007 0.719±0.002 0.723±0.001 0.817±0.001
GeoScattering-R 0.867±0.065 0.718±0.020 0.740±0.039 0.705±0.046 0.470±0.037 0.528±0.008 0.766±0.007 0.723±0.001 0.843±0.002
GeoScattering-G 0.883±0.067 0.721±0.017 0.737±0.035 0.711±0.061 0.497±0.055 0.539±0.009 0.767±0.004 0.724±0.001 0.843±0.002
GeoScattering-S 0.867±0.079 0.709±0.020 0.749±0.032 0.710±0.029 0.493±0.052 0.535±0.011 0.771±0.005 0.724±0.001 0.843±0.002
GeoScattering-G-L 0.878±0.035± 0.721±0.024± 0.745±0.049 0.707±0.077 0.489±0.055 0.539±0.012 0.768±0.005 0.724±0.001 0.843±0.002
GeoScattering-S-L 0.867±0.084 0.720±0.020 0.749±0.041 0.737±0.032 0.488±0.042 0.539±0.008 0.773±0.006 0.724±0.001 0.843±0.002
GeoScattering-G-IL 0.894±0.061 0.751±0.020 0.750±0.050 0.712±0.031 0.489±0.037 0.533±0.012 0.779±0.007 0.724±0.001 0.843±0.002
GeoScattering-S-IL 0.867±0.115 0.745±0.023 0.737±0.037 0.740±0.032 0.503±0.044 0.534±0.006 0.784±0.006 0.725±0.001 0.844±0.002

FE
AT

H
ER

FEATHER 0.833±0.086 0.590±0.020 0.699±0.048 0.72±0.053 0.466±0.047 0.533±0.006 0.751±0.005 0.721±0.001 0.831±0.002
FEATHER-R 0.861±0.075 0.740±0.020 0.738±0.038 0.716±0.056 0.493±0.022 0.523±0.003 0.783±0.005 0.721±0.002 0.841±0.002
FEATHER-G 0.906±0.046 0.739±0.028 0.742±0.042 0.729±0.062 0.485±0.039 0.521±0.004 0.781±0.005 0.722±0.001 0.841±0.002
FEATHER-S 0.900±0.104 0.735±0.024 0.748±0.037 0.717±0.040 0.488±0.039 0.521±0.007 0.791±0.006 0.723±0.001 0.843±0.002
FEATHER-G-L 0.906±0.053 0.745±0.012 0.741±0.047 0.730±0.038 0.485±0.048 0.520±0.003 0.779±0.006 0.721±0.001 0.841±0.002
FEATHER-S-L 0.889±0.074 0.736±0.014 0.745±0.045 0.713±0.029 0.498±0.056 0.522±0.011 0.789±0.007 0.722±0.002 0.842±0.002
FEATHER-G-IL 0.861±0.095 0.751±0.028 0.734±0.052 0.724±0.040 0.477±0.048 0.518±0.017 0.762±0.010 0.722±0.001 0.841±0.002
FEATHER-S-IL 0.878±0.057 0.756±0.316 0.737±0.052 0.720±0.052 0.487±0.050 0.516±0.014 0.779±0.006 0.721±0.002 0.843±0.002

Graph neural networks. We primarily compare with three types
of GNNs, GIN [28], 1-GNN, and 1-2-3-GNN [16]. Where the first
two are 1-order GNNs and 1-2-3-GNN is a high-order GNN. In
the experiments on synthetic data (Section 4.3), we further include
P-GNN [13], which is a more powerful high-order GNN but has
very high computation cost.

4.2 Experiments on Real-World Datasets
We first evaluate different methods on real-world datasets. Our
primary goal here is to demonstrate that the histogram approaches
clearly improve various types of vanilla graph fingerprints. We
also provide the performance of popular GNNs for graph-level
predictions as a reference.
Datasets. We adopt two groups of graph classification datasets.
The first group (TU datasets [15]) consists of five popular graph
kernel benchmark datasets [29], including 3 bioinformatics datasets

MUTAG, NCI1, PROTEINS and 2 social network datasets IMDB-
BIN, and IMDB-MULTI. The second group (Karateclub datasets [17])
consists of four social network datasets, GitHub StarGazers, Twitch
Egos, Reddit Threads, and Deezer Egos, which have been used to
benchmark various graph fingerprints.
Experiment setup. On the TU datasets, we train and evaluate
all the models except for the vanilla graph fingerprints following
exactly the same experiment setup as in Morris et al. [16] (10-fold
cross validation, average test accuracy is reported). For NetLSD,
Geoscattering and FEATHER, a logistic regression is applied on
top of the unsupervised graph fingerprints, so we do not need
a validation set. Therefore for these vanilla graph fingerprints,
we merge the validation set into the training set when fitting the
logistic regression.

On the Karateclub datasets, we randomly split the dataset into
training, validation, and test sets by the ratio of 65:15:20. For NetLSD,
Geoscattering and FEATHER, again we merge the validation set

GLB ’21, April 12–16, 2021, Online Jiaxin Ying, Jiaqi Ma, and Qiaozhu Mei

Table 2: Average test MAE on the sythetic regular graph
dataset. Bold entries indicate the best performance.

Model 3-clique 4-clique

1-GNN 0.7932±0.0239 0.5928±0.1988
GIN 0.7957±0.0212 0.5892±0.1991

1-2-3-GNN 0.4834±0.2749 0.5760±0.2024
P-GNN 0.0972±0.1122 0.1953 ±0.1415

GeoScattering-G 0.0940 ± 0.2175 0.3160±0.1529

into the training set when fitting the logistic regression. We repeat
5 independent splits, and report the average AUC of the 5 trials.
Results on real-world datasets. The results on the two groups
of real-world datasets are shown in Table 1. We first observe that,
compared to the vanilla graph fingerprints, applying the histogram
approaches almost always improve the performances, regardless
the variant of histogram approaches. Next, using a fuzzy histogram
(i.e., histograms with Gaussian or Silverman kernels) often outper-
forms the variant using a discrete histogram (i.e., histograms with
a rectangular kernel). However, there is no consistent evidence
to show that making the location/scale parameters learnable or
using a more sophisticated initialization method leads to a better
performance. Finally, we see that the graph fingerprints improved
by the histogram approaches achieve better or similar performance
compared to popular GNNs and kernel methods for graph classifi-
cation, which makes graph fingerprint methods strong baselines to
be considered in the context of graph classification.

4.3 Experiments on Synthetic Data
We further conduct experiments on synthetic graphs to better eval-
uate the expressive power and the computational costs of different
methods.

To evaluate the expressive power, we generate a benchmark
synthetic dataset of random regular graphs. A 𝑘-regular graph is
defined as a graph where each node has exactly the same degree 𝑘 .
Distinguishing regular graphs is a relatively hard task. In particu-
lar, 1-order MP-GNNs are proved to fail in distinguishing regular
graphs [19], and (strongly) regular graphs are commonly used as
benchmark for the graph isomorphism test [14].

To cleanly measure the computational costs of different methods
in terms of the graph size, we generate a series of synthetic datasets
of Poisson random graphs with different graph sizes. In this way,
we are able to robustly evaluate the average computational costs of
different methods at different graph sizes.

The detailed experiment setups for synthetic data are described
in Appendix B.3.
Prediction performance on regular graphs. The experiment
results on the synthetic regular graph dataset are shown in Table 2.
First we observe that the 1-orderMP-GNNs, i.e., 1-GNN andGIN, are
among the worst on both tasks, which verifies the theory that they
are not able to distinguish the regular graphs. P-GNN achieves the
best performance due to its superior expressive power on 4-clique
task. However, Geoscattering-G achieves the best performance on

(a) Total time and preprocessing time. The total
time consists of both preprocessing time (grey area)
and training time.

(b) Peak GPU memory.

Figure 1: Computational costs of the GeoScattering-G and
various MP-GNNs on Poisson random graphs with varying
graph sizes. OOMmeans out of memory.

3-clique task and is much better than all other MP-GNNs except
for P-GNN. The reason why 1-2-3-GNN does not perform well on
the two tasks might be due to the local approximation in its official
implementation [16].
Computational cost on Poisson random graphs. As can be
seen in Figure 1, higher-order MP-GNNs have significantly larger
computational costs compared to 1-order MP-GNNs and the pro-
posed GeoScatteirng-G. Both the time and memory costs grow
quickly for P-GNN and 1-2-3-GNN in terms of the graph size. And
P-GNN can barely scale to graphs with a couple hundreds of nodes.
GeoScattering-G has larger preprocessing time compared to 1-order
MP-GNNs but has similar training time. In Appendix B.3, we also
show GeoScattering-G has similar training time per epoch as 1-
order MP-GNNs.

5 CONCLUSION
In this paper, we generalize the discrete histogram approach on
HKS by Li et al. [10] as a fuzzy histogram approach, and apply it on

A Simple Yet Effective Method Improving Graph Fingerprints for Graph-Level Prediction GLB ’21, April 12–16, 2021, Online

various types of graph fingerprints. Through extensive benchmark
study, we demonstrate that this simple method can significantly
improve all the tested graph fingerprint methods, achieving on-par
performance with popular GNNs for graph classification. The im-
proved graph fingerprint methods are not limited by 1-WL in terms
of expressive power, and have significantly lower computation costs
compared to high-order GNNs. We suggest graph fingerprints en-
hanced by the histogram approach should be considered as strong
baselines in the context of graph classification tasks.

Acknowledgement. The authors would like to thank Jing Zhu for
her contributions to this project.

REFERENCES
[1] Vladimir Batagelj and Ulrik Brandes. 2005. Efficient generation of large random

networks. Physical Review E 71, 3 (2005), 036113.
[2] Karsten M Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on

graphs. In Fifth IEEE international conference on data mining (ICDM’05). IEEE,
8–pp.

[3] Nathan de Lara and Edouard Pineau. 2018. A simple baseline algorithm for graph
classification. arXiv preprint arXiv:1810.09155 (2018).

[4] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[5] Feng Gao, Guy Wolf, and Matthew Hirn. 2019. Geometric scattering for graph
data analysis. In International Conference on Machine Learning. PMLR, 2122–2131.

[6] Jeong Han Kim and Van H Vu. 2003. Generating random regular graphs. In
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing.
213–222.

[7] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[8] Boris Knyazev, Graham W Taylor, and Mohamed Amer. 2019. Understanding
attention and generalization in graph neural networks. In Advances in Neural
Information Processing Systems. 4202–4212.

[9] Nils M Kriege, Pierre-Louis Giscard, and Richard C Wilson. 2016. On valid
optimal assignment kernels and applications to graph classification. arXiv preprint
arXiv:1606.01141 (2016).

[10] Cheng Li, Xiaoxiao Guo, and Qiaozhu Mei. 2016. Deepgraph: Graph structure
predicts network growth. arXiv preprint arXiv:1610.06251 (2016).

[11] Cheng Li, Jiaqi Ma, Xiaoxiao Guo, and Qiaozhu Mei. 2017. Deepcas: An end-to-
end predictor of information cascades. In Proceedings of the 26th international
conference on World Wide Web. 577–586.

[12] Stéphane Mallat. 2012. Group invariant scattering. Communications on Pure and
Applied Mathematics 65, 10 (2012), 1331–1398.

[13] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. 2019.
Provably powerful graph networks. In Advances in Neural Information Processing
Systems. 2156–2167.

[14] Rudolf Mathon. 1978. Sample graphs for isomorphism testing. Congressus
Numerantium 21 (1978), 499–517.

[15] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. 2020. TUDataset: A collection of benchmark datasets for
learning with graphs. In ICML 2020 Workshop on Graph Representation Learning
and Beyond (GRL+ 2020). arXiv:2007.08663 www.graphlearning.io

[16] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33. 4602–4609.

[17] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. An API Oriented
Open-source Python Framework for Unsupervised Learning on Graphs. arXiv
(2020), arXiv–2003.

[18] Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic Functions on Graphs:
Birds of a Feather, from Statistical Descriptors to Parametric Models. arXiv
preprint arXiv:2005.07959 (2020).

[19] Ryoma Sato. 2020. A survey on the expressive power of graph neural networks.
arXiv preprint arXiv:2003.04078 (2020).

[20] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

[21] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Kon-
stantinos Skianis, and Michalis Vazirgiannis. 2020. GraKeL: A Graph Kernel
Library in Python. arXiv:1806.02193 [stat.ML]

[22] Angelika Steger and Nicholas C Wormald. 1999. Generating random regular
graphs quickly. Combinatorics, Probability and Computing 8, 04 (1999), 377–396.

[23] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A concise and provably
informative multi-scale signature based on heat diffusion. In Computer graphics
forum, Vol. 28. Wiley Online Library, 1383–1392.

[24] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and
Emmanuel Müller. 2018. Netlsd: hearing the shape of a graph. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2347–2356.

[25] Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Kleinberg. 2012.
Structural diversity in social contagion. Proceedings of the National Academy of
Sciences 109, 16 (2012), 5962–5966.

[26] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[27] Saurabh Verma and Zhi-Li Zhang. 2017. Hunt for the unique, stable, sparse and
fast feature learning on graphs. In Advances in Neural Information Processing
Systems. 88–98.

[28] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[29] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1365–1374.

[30] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. 2018. Graph neural networks: A review of
methods and applications. arXiv preprint arXiv:1812.08434 (2018).

https://arxiv.org/abs/2007.08663
www.graphlearning.io
https://arxiv.org/abs/1806.02193

GLB ’21, April 12–16, 2021, Online Jiaxin Ying, Jiaqi Ma, and Qiaozhu Mei

A METHOD DETAILS
We introduce more details of the histogram approach here. In par-
ticular, we use the process of applying the histogram approach on
FEATHER [18] as an example to illustrate the idea.
Notations. Before we dive into the details, we first introduce a few
general notations that will be used across this section. We denote a
graph as

𝐺 = (𝑉 , 𝐸,𝐴,𝑋),
where 𝑉 = {1, 2, · · · , 𝑁 } is the set of 𝑁 nodes, 𝐸 ∈ 𝑉 × 𝑉 is the
set of edges, 𝐴 ∈ R𝑁×𝑁 is the adjacency matrix, and 𝑋 ∈ R𝑁×𝐾 is
the node feature matrix. We write the degree matrix as 𝐷 ∈ R𝑁×𝑁 ,
which is a diagonal matrix with 𝐷𝑖𝑖 =

∑
𝑗 ∈𝑉 𝐴𝑖 𝑗 for any 𝑖 ∈ 𝑉 . We

also denote the random walk transition matrix as
𝑃 = 𝐷−1𝐴.

A.1 A Brief Introduction on FEATHER
The FEATHER fingerprint is motivated by modeling the distribu-
tion of node features through a characteristic function. Specifically,
for each feature dimension 𝑘 = 1, · · · , 𝐾 and each node 𝑗 ∈ 𝑉 ,
Rozemberczki and Sarkar [18] define a series of 𝑅 characteristic
functions 𝜙𝑟

𝑗𝑘
: R→ C, for 𝑟 = 1, · · · , 𝑅, such that

𝜙𝑟
𝑗𝑘
(𝑡) =

∑
𝑙 ∈𝑉

[
𝑃𝑟

]
𝑗𝑙
𝑒𝑖𝑡𝑋𝑙𝑘 ,

where 𝑖 is the imaginary unit and recall that 𝑃𝑟 is the 𝑟 -step random
walk transition matrix. The underlying assumption can be thought
of that the distribution of the feature of a node is modeled by the
features of its neighbors weighted by the “closeness” between them.
Given 𝑀 pre-specified evaluation points 𝑡1, 𝑡2, · · · , 𝑡𝑀 , the node-
level FEATHER fingerprints are then defined as a 4-dimensional
complex tensor Φ ∈ C𝐾×𝑅×𝑁×𝑀 , where, for any 𝑘 = 1, · · · , 𝐾 ,
𝑗 ∈ 𝑉 , 𝑟 = 1, · · · , 𝑅, and𝑚 = 1, · · · , 𝑀 ,

Φ𝑘 𝑗𝑟𝑚 = 𝜙𝑟
𝑗𝑘
(𝑡𝑚) .

To simplify the notations in the following sections, we further
transform Φ into a 3-dimensional real tensor Ψ ∈ R2𝐾𝑅×𝑁×𝑀 by
concatenating the real part and imaginary part of Φ and merging
the first two dimensions.

A.2 Multi-Channel Fuzzy Histograms and
Convolution Layers

From node-level to graph-level representation. Note that the
FEATHER Ψ are node-level fingerprints and have a dimension of
size 𝑁 . To form a graph-level representation that can be used in a
graph-level prediction task, we need to eliminate the dependence
of 𝑁 . In previous work [18, 24], this is usually done by simply
applying a sum or average pooling operation over the 𝑁 nodes,
which inevitably causes significant information loss. To alleviate
such information loss, Li et al. [10] propose to use a histogram with
𝐵 bins to summarize the distribution of the node-level fingerprints
over the 𝑁 nodes, and apply it to HKS [23]. To generalize this
histogram idea to other fingerprints and get a smoother histogram
representation, we come up with a multi-channel fuzzy histogram
approach. We note that we omit the description of “channel” in
Section 3 for simplicity.

Multi-channel fuzzy histograms. Suppose we concatenate all
the node-level fingerprints into a 3-dimensional real tensor Ψ ∈
R𝐿×𝑁×𝑀 , where in the case of FEATHER, 𝐿 = 2𝐾𝑅. We refer the
first dimension as 𝐿 channels.

For each channel 𝑙 = 1, · · · , 𝐿, we can define a kernel function
𝑓 𝑙 : R→ R+ satisfying∫

𝑓 𝑙 (𝑥)𝑑𝑥 = 1,

∫
𝑥 𝑓 𝑙 (𝑥)𝑑𝑥 = 0, and

∫
𝑥2 𝑓 𝑙 (𝑥)𝑑𝑥 > 0. (1)

And each channel 𝑙 is also associated with 𝐵 pairs of location and
scale parameters {(𝜇𝑙

𝑏
, 𝜎𝑙
𝑏
)}𝐵
𝑏=1

. We can calculate a fuzzy histogram
𝐻 ∈ R𝐿×𝐵×𝑀 from the node-level fingerprints Ψ, such that, for any
𝑙 = 1, · · · , 𝐿, 𝑏 = 1, · · · , 𝐵, and𝑚 = 1, · · · , 𝑀 ,

𝐻𝑙𝑏𝑚 =

𝑁∑
𝑖=1

𝑓 𝑙

(
Ψ𝑙𝑖𝑚 − 𝜇𝑙𝑏

𝜎𝑙
𝑏

)
.

We note that the application of the kernel functions to the node-
level fingerprints Ψ can be calculated in fully parallel. So the trans-
formation from Ψ to 𝐻 is very efficient on GPU. In practice, we
further normalize 𝐻 by 𝐻𝑙𝑏𝑚 ← 𝐻𝑙𝑏𝑚∑𝐵

𝑑=1𝐻𝑙𝑑𝑚

for any 𝑙 = 1, · · · , 𝐿
and𝑚 = 1, · · · , 𝑀 .

The choice of the kernel functions can be very flexible as long as
it satisfies the conditions (1). And the choices for different channels
can differ, though we make them to be the same in our implemen-
tation. The choice of kernel functions and the configurations of the
location/scale parameters have already been discussed in Section 3.
Convolution layers. A nice property of the fuzzy histogram 𝐻

(with 3 dimensions × 𝐵 × 𝑀) is that the entries of 𝐻 come with
continuity in the last two dimensions respectively. The second di-
mension represents the (soft) bins of the histogram and the third
dimension represents the evaluation points of the graph finger-
prints. It is therefore compatible with 2-D convolution layers. We
apply a convolutional neural network on top of the fuzzy histogram
to learn the higher-level representations of the graph and make
the final predictions. The location/scale parameters of the fuzzy
histogram kernels and the parameters of the convolutional neu-
ral network can be jointly learned through the supervision of the
graph-level labels.

B EXPERIMENT DETAILS
B.1 Baseline Methods

Graph Kernel models
• ShortestPath [2]: ShortestPath kernel method is based on
shortest paths calculation.
• WL [20]: WL subtree kernel has a tight connection with
1-WL algorithm, generating WL node embedding through
an iterative relabeling.
• WL-OA [9] Based on WL node embedding scheme, WL-
OA kernel apply an optimal assignment between two sets of
node embeddings in order tomaximize the sum of similarities
between assigned points, unlike WL subtree kernel which
consider all pairwise similarity.

Graph kernels can be used to measure the similarity of two
graphs. We use GraKeL library [21] to obtain kernel values for

A Simple Yet Effective Method Improving Graph Fingerprints for Graph-Level Prediction GLB ’21, April 12–16, 2021, Online

all pairs of graphs, and then we use SVM on top of it to perform
classification.
MP-GNN models.

• GIN [28]: Graph Isomorphism Network (GIN) is a type of
1-order MP-GNN with the maximum expressive power (in
the sense of WL test) among the class of 1-order MP-GNNs.
• 1-GNN and 1-2-3-GNN [16]: 1-GNN is another type of 1-
order MP-GNN; and 1-2-3-GNN is a hierarchical high-order
MP-GNN with up to 3-WL expressive power.
• P-GNN [13]: Powerful GNN (P-GNN) is another type of
high-order MP-GNN with provably 3-WL expressive power.

In particular, P-GNN and 1-2-3-GNN are two of the state-of-the-
art MP-GNN models for many graph-level prediction tasks. For
1-GNN, 1-2-3-GNN, and P-GNN, we use the official implementa-
tions in our experiments. For GIN, we use the implementation of
the PyTorch-Geometric library [4]. While theoretically 1-2-3-GNN
is able to achieve set 3-WL expressive power, the practical imple-
mentation uses a local approximation for better computational
efficiency, which may compromise its expressive power.
Graph fingerprint methods.

• NetLSD [24] The NetLSD model gets the graph fingerprints
based on calculating heat kernel traces of the graph at mul-
tiple time scales.
• GeoScatteirng [5] Geoscattering model utilize geometric
wavelet scattering transform to get graph fingerprints by
calculating different order geometric scattering moments.
• FEATHER [18]: This baseline method applies a logistic re-
gression on top of the unsupervised FEATHER fingerprints
(see Appendix A.1).

Among various unsupervised graph fingerprint methods [24, 27],
FEATHER has been shown to significantly outperform others on
many datasets [18]. For both the baseline NetLSD, GeoScattering,
and FEATHER, we adopt the implementation from the KarateClub
library [17] to obtain graph embeddings, and use logistic regression
on top of it to perform graph classification.

B.2 Experiments on Real-World Datasets

Statistics of real-wolrd datasets Statistics about total number
of graphs, average number of nodes and average number of edges
are included in Table3.
Hyper-parameters. For all models, we grid-search hyper-parameters
on the Github Stargazers dataset with the validation performance,
and apply the same hyper-parameters to all other datasets. We
use Adam to train all neural network models and search the ini-
tial learning rate from {0.0001, 0.001, 0.01}. For GNNs, we search
the number of hidden units from {16, 32, 64, 128}. The learning
rate and the number of hidden units of each GNN are individ-
ually selected. For histogram-histogram based models, there are
many different variants of models but they share almost the same
set of hyper-parameters. To avoid the risk of overfitting in hyper-
parameter search, we search these hyper-parameters only using
the FEATHER-G-L model, and apply the same value to all other
histogram-based models on all datasets. We further list the major

Table 3: Summary statistics of the real-world datasets.

Dataset Statistics
#Graphs Avg. #Nodes Avg. #Edges

MUTAG 188 17.93 19.79
NCI1 4110 29.87 32.30

PROTEINS 1113 39.06 72.82
IMDB-BIN 1000 19.77 96.53

IMDB-MULTI 1500 13.00 65.94
Deezer Egos 9629 23.49 65.25

GitHub StarGazers 12725 113.79 234.64
Twitch Egos 127094 29.67 86.59

Reddit Threads 203088 23.93 24.99

hyper-parameters we use for the histogram-based models as fol-
lows. We set the learning rate to be 0.0001 and set the the number
of bins 𝐵 to be 16. We use a convolution neural network with 3
convolution layers and 2 fully connected layers, with the output
channels of the convolution layers being 32, 64, 64, and the number
of hidden units of the fully connected layers as 1024. We apply
BatchNorm2d and RELU activation function on each convolution
layers, and apply MaxPool2d on second and third convolution layer.
For both histogram-based models and the vanilla graph fingerprint
methods, we set the number and values of evaluation points (as
well as other hyper-parameters related to each fingerprint method)
as default in the KarateClub library.

B.3 Experiments on Synthetic Data

Experiment setup on the regular graphs. We generate 10 dif-
ferent groups of regular graphs using the random_regular_graph
function in NetworkX [6, 22]. Each group contains 500 graphs with
the same number of nodes 𝑁 and degree 𝑘 . For each graph, we
calculate two labels for it: (1) the number of 3-cliques (closed trian-
gles), and (2) the number of 4-cliques. We also normalize the labels
within each group. The task of counting triangles in a graph is also
adopted in a synthetic data in previous work [8]. We perform two
regression tasks on the random regular dataset with targets respec-
tively as the normalized 3-clique numbers and 4-clique numbers.
For each group, we use 5 cross validation to get the average test
error. For each model, we apply early stopping on the validation
set and report the average of the 5 test mean average error (MAE).
Experiment setup on the Poisson random graphs. For the
computational cost experiments, we generate graphs through the
fast_gnp_random_graph function in NetworkX [1], setting 𝑛 ∈
{16, 32, 64, 128, 256} and 𝑝 = 0.2. We generate 5 datasets, each
dataset has the same number of nodes and there are 1000 graphs
in each dataset. We use the normalized number of 3-cliques as the
graph label. For each dataset, we run 500 epochs for each model.
Finally we report the peak GPU memory, preprecossing time, total
training time, and training time per epoch.
Training time per epoch. Figure 1b shows the training time per
epoch of different methods.

GLB ’21, April 12–16, 2021, Online Jiaxin Ying, Jiaqi Ma, and Qiaozhu Mei

A Simple Yet Effective Method Improving Graph Fingerprints for Graph-Level Prediction GLB ’21, April 12–16, 2021, Online

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Fingerprints
	2.2 Graph Neural Networks

	3 The Histogram Approaches
	4 Experiments
	4.1 Methods for Comparison
	4.2 Experiments on Real-World Datasets
	4.3 Experiments on Synthetic Data

	5 Conclusion
	References
	A Method Details
	A.1 A Brief Introduction on FEATHER
	A.2 Multi-Channel Fuzzy Histograms and Convolution Layers

	B Experiment Details
	B.1 Baseline Methods
	B.2 Experiments on Real-World Datasets
	B.3 Experiments on Synthetic Data

