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ABSTRACT
Recurrent graph convolutional neural networks are highly effective
machine learning techniques for spatiotemporal signal processing.
Newly proposed graph neural network architectures are repetitively
evaluated on standard tasks such as traffic or weather forecasting. In
this paper, we propose the Chickenpox Cases in Hungary dataset as a
new dataset for comparing graph neural network architectures. Our
time series analysis and forecasting experiments demonstrate that
the Chickenpox Cases in Hungary dataset is adequate for comparing
the predictive performance and forecasting capabilities of novel
recurrent graph neural network architectures.
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1 INTRODUCTION
Forecasting future edge and vertex attributes using spatial structure
and historical values of the node and link attributes is a fundamental
research problem for spatiotemporal machine learning. Recurrent
graph neural networks can elegantly solve such spatiotemporal
signal tasks with high predictive performance by training a graph
convolutional neural network which is integrated or stacked with
a recurrent neural network layer [15, 19]. These machine learning
techniques have favorable practical characteristics such as online
training and models that are transferable across graphs [2, 5, 10].
Hence, finding real world problems on which the forecasting per-
formance of these architectures can be tested is crucial for fostering
temporal graph representation learning research. However, recur-
rent graph neural networks are often iteratively evaluated and
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compared using the same overutilized datasets from a restricted
number of application domains such as urban traffic and weather
forecasting [12, 24]. These challenges related to the public avail-
ability of suitable and relevant spatiotemporal benchmark datasets
are the main motivations of the present work.

Present work. In the pursuit of advancing temporal graph neu-
ral network research we publicly release the Chickenpox Cases in
Hungary dataset: a multivariate time series of weekly reported
chickenpox cases in Hungarian counties. By utilizing this novel
epidemiological dataset, the forecasting capabilities of newly pro-
posed graph neural network models can be quantified. The intrinsic
statistical characteristics of the dataset such as seasonality, spatial
and temporal autocorrelation, zero inflation, heteroskedasticity and
structural changes make the forecasting a challenging machine
learning task. Our contribution also opens up venues to assess the
predictive performance of existing spatiotemporal models.

Main contributions. The major results and contributions pre-
sented in our work can be summed up as follows:

(1) We release Chickenpox Cases in Hungary, a novel spatiotem-
poral dataset which can be used to benchmark the forecast-
ing performance of graph neural network architectures.

(2) We conduct a descriptive analysis of the time series and
discuss the particular spatiotemporal modeling challenges
that the dataset poses.

(3) We assess the performance of existing recurrent graph neural
network architectures on multiple forecasting horizons.

The remainder of this paper has the following structure. In Section 2
we overview the related literature about chickenpox and parametric
spatiotemporal statistical models. In Section 3 we carry out a de-
scriptive analysis of the dataset, while Section 4 discusses the poten-
tial modeling challenges. We present predictive performance bench-
marks on the dataset in Section 5 and the paper concludes with
Section 6. The spatial adjacency matrix and the county level time
series are available at https://github.com/benedekrozemberczki/
spatiotemporal_datasets.

2 RELATEDWORK
In this section we give a brief overview of related work about the
epidemiology and characteristics of chickenpox and the design of
recurrent graph neural network architectures.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The weekly number of chickenpox cases in Hungarian counties and the capital between 2005 and 2015.
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Figure 2: One year running mean and standard deviation of
weekly chickenpox cases in selected Hungarian counties.

2.1 Chickenpox
Chickenpox or varicella is a highly contagious airborne disease
caused by the varicella zoster virus (VZV) [1]. By the age of 20,
more than 90 percent of the population is exposed to the VZV in
developed countries [4]. While chickenpox might produce common
early symptoms such as headache or nausea, its onset is character-
ized by the rapid appearance of an easily distinguishable skin rash
[13]. Although vaccines against VZV infection are available [20],
only a handful of countries have national immunization programme
[6]. In Hungary there is no mandatory vaccination against chick-
enpox but vaccines are available and are routinely recommended
to parents. Physicians have to report each case to the local centre
of epidemiology which are then aggregated and publicly presented

weekly for each of the 20 counties of Hungary, resulting in an ideal
data collection environment from the modeling perspective [8].

2.2 Spatiotemporal neural models
Spatiotemporal neural models are a family of parametric statistical
models which can handle data that has distinct time and spatial
dimensions e.g. traffic measurements, regional epidemiological re-
porting or weather. The specific recurrent graph neural network
models compared in our work fuse ideas from the design of graph
convolutional neural network layers [2, 10, 11, 17, 23] and recur-
rent neural networks [3, 7]. These models operate on temporal
sequences of spatial data; at each time step a graph neural network
layer convolves the input features or hidden states of the recur-
rent unit. Recurrent and graph convolutional layers are trained
jointly on a downstream task and the design of these architectures
requires the choice of a graph neural network and a recurrent
unit. Popular choices for graph neural networks are spectral graph
convolutions [10] and graph attention networks [23] while the
most frequently augmented recurrent neural networks include long
short-term memory cells [7] and gated recurrent units [3].

3 CHARACTERISTICS OF THE DATASET
Our main contribution is the release of the Chickenpox Cases in
Hungary dataset which consists of county level time series and
a spatial graph which describes the spatial connectivity of the
counties. The county level time series describe the weekly number
of chickenpox cases reported by general practitioners in Hungary.

We manually collected the time series by collating the reported
case counts from the digital version of the Hungarian Epidemiologi-
cal Info1, a weekly bulletin of morbidity and mortality of infectious
diseases in Hungary. Our data collection covered the weeks be-
tween the January of 2005 and January of 2015 and the resulting
time series has more than 500 entries for all of the counties without

1http://www.oek.hu/

http://www.oek.hu/
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any missingness. The underlying spatial graph has 20 vertices (19
counties and the capital Budapest) and there are 61 edges between
the nodes. We plotted the county level reported case count time
series on Figure 1.

Main characteristics of the time series. Looking at the time
series on Figure 1 we can make multiple important observations.
These are the following:

• The number of reported cases is population dependent; spa-
tial units with more inhabitants such as the capital Budapest
report more cases on average.

• The time series all exhibit strong seasonality which can be a
result of weather conditions or the periodicity of the school
year.

• A large number of counties report no new cases in the sum-
mer months – these county level time series are zero inflated.

3.1 Structural changes and trends
The county level time series are noisy and exhibit a strong yearly
seasonality, due to this, we cannot theorize whether there are struc-
tural changes without correcting the seasonality. We calculated the
52 weeks running average and standard deviation of the weekly
case counts for selected counties and the capital and plotted the
resulting times series on Figure 2.
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Figure 3: The truncated random walk weighted spatial auto-
correlation of the on level and first-order differenced chick-
enpox case count time series.

Mainfindings.Weobservemultiple statistical phenomenawhich
pose modelling challenges. These can be summarized as:

• The yearly rolling average of the county level mean case
count is not constant. This can be an artifact of population
shift or the result of intrinsic epidemiological dynamics.

• Standard deviations of the time series change with time
which means that the models have to take into consideration
the time dependent variation in the outcome variable.

3.2 Measuring spatial autocorrelation
We quantify the spatial autocorrelation of chickenpox cases by
using a truncated random walk weighted variant of Moran’s I index.
Given an unweighted and undirected graph𝐺 = (𝑉 , 𝐸) let us denote
the adjacency matrix by A and the diagonal degree matrix as D.
The row normalized adjacency matrix is defined as Â = D−1A and
the transition probability matrix of an 𝑟 -length truncated random
walk equals to Â

𝑟
. Correspondingly the truncated random walk

weighted spatial autocorrelation index [14] of the node feature
vector x ∈ R |𝑉 | at scale 𝑟 is defined by Equation (1). Here x is the
average of the generic vertex feature and 𝑢, 𝑣 ∈ 𝑉 are vertices.

I =
|𝑉 |∑

𝑣∈𝑉
∑
𝑢∈𝑉 Â

𝑟

𝑢,𝑣

∑
𝑣∈𝑉

∑
𝑢∈𝑉 Â

𝑟

𝑢,𝑣 (x𝑣 − x) (x𝑢 − x)∑
𝑣∈𝑉 (x𝑣 − x)2

(1)

We plotted on Figure 3 the spatial autocorrelation index using
the first 5 proximity scales for the on level case count and first-order
differenced case number time series. All of the county level time
series were centralized to be 0 mean and standardized before the
autocorrelation index computation.

Main findings. The most important empirical regularities that
we can observe are the following:

• Both the county level case count and differenced case count
time series exhibit spatial autocorrelation through the years.

• The spatial autocorrelation is present at multiple scales but
it decreases with increasing the distance being considered.

• The strength of spatial autocorrelation is not constant – there
are visible trends in the spatial autocorrelation time series.

4 THE MODELING CHALLENGES
The Chickenpox Cases in Hungary dataset poses a number of ma-
chine learning modeling challenges for researchers. Based on our
descriptive analysis of the time series these challenges can be briefly
summarized as:

• Temporal autocorrelation. The weekly number of new
chickenpox cases is correlated with the case numbers from
earlier weeks.

• Spatial autocorrelation. The number of newly infected
children and the difference in the number of new cases are
correlated across neighboring spatial units.

• Heteroskedasticity. The standard deviation of the county
level time series is not constant over time.

• Seasonality. The county level count of chickenpox cases
exhibit strong yearly seasonality. This can be an artifact of
weather conditions or caused by the periodicity of the school
year.

• Multiple scales. The Hungarian county system consist of
spatial units which have a heterogeneous size. Budapest,
the largest one, has nearly 10 times more inhabitants than
Nograd which is the least populated one.

• Count data. The target variables describe the weekly count
of chickenpox cases. The design of the graph neural network
has to take this fact into account: particularly when it comes
to the choice of loss function and the activation functions in
the output layer.
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• Zero inflation. Certain smaller counties report no cases
during the weeks of the summer in a randomly dispersed
manner, which causes challenges for traditional count data
modeling.

• Structural changes and random events. The one and half
decade long time horizon of the dataset gives plenty of space
for population shift and years when the winter surge in
chickenpox cases did not happen in certain counties.

Designing novel graph neural network architectures that can ap-
propriately model a dataset with these statistical characteristics is
a challenging task.

5 NEURAL BENCHMARKS
We tested the predictive performance of recurrent graph neural
networks on county level chickenpox time series forecasting. Using
the PyTorch Geometric Temporal [5, 16, 18] implementation of the
models we trained on the standardized chickenpox time series and
predicted it for a fixed number of weeks ahead. The input graph
describes the undirected direct adjacency relations of the counties.

All recurrent models used 8 temporal lags as input features and
had 32 dimensional graph convolutional filters. The output of the
convolutional layer was fed to a feedforward output layer. Each
model was trained for 200 epochs with the Adam optimizer [9] and
we used a learning rate of 10−2. In Table 4 we present average mean
squared error values for various forecasting horizons calculated
from 10 experimental runs.

Figure 4: The average test mean squared error with stan-
dard deviations obtained over 10/20/40 weeks long forecast-
ing horizons calculated from a 10 experimental runs. Bold
numbers denote the best performing models.

10 weeks 20 weeks 40 weeks
GConvLSTM [19] 0.741 ± 0.005 0.403 ± 0.003 1.221 ± 0.010
GConvGRU [19] 0.757 ± 0.001 0.407 ± 0.001 1.117 ± 0.002
Evolve GCN-O [15] 0.775 ± 0.007 0.419 ± 0.004 1.120 ± 0.003
Evolve GCN-H [15] 0.766 ± 0.009 0.413 ± 0.009 1.115 ± 0.013
DynGRAE [21, 22] 0.706 ± 0.004 0.382 ± 0.002 1.112 ± 0.010
STGCN [24] 0.763 ± 0.008 0.405 ± 0.007 1.118 ± 0.005
DCRNN [12] 0.753 ± 0.003 0.395 ± 0.001 1.119 ± 0.002

Main findings. Based on the forecasting performance of graph
neural networks we can make the following observations:

• The DynGRAE [21, 22] architecture works best at forecasting
horizon and the advantage is significant at 𝛼 = 5%.

• There are considerable performance differences between
models; see for example Evolve GCN-O and DynGRAE.

• When the forecasting horizon is increased the predictive
performance of some models is worse than random.

6 CONCLUSIONS
We introduced Chickenpox Cases in Hungary, a longitudinal dataset
for benchmarking the predictive performance of spatiotemporal
graph neural network architectures. Our exploratory analysis high-
lighted the unique statistical characteristics of the dataset which
make predicting the weekly number of cases a challenging task.

We evaluated the forecasting capabilities of the state-of-the-art
recurrent graph neural networks. Our findings demonstrate that
the current design of graph neural networks is moderately well
suited for solving this task.
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