
Reproducible Evaluations of Network Representation Learning
Models Using EvalNE

Alexandru Mara
Ghent University
Ghent, Belgium

alexandru.mara(at)ugent.be

Jefrey Lijffijt
Ghent University
Ghent, Belgium

jefrey.lijffijt(at)ugent.be

Tijl de Bie
Ghent University
Ghent, Belgium

tijl.debie(at)ugent.be

ABSTRACT
In this paper we introduce EvalNE, a Python toolbox for the evalua-
tion of network representation learning methods. The main goal of
EvalNE is to help researchers perform consistent and reproducible
evaluations of new representation learning methods, compare these
with the state-of-the-art or conduct benchmark studies. The tool-
box can evaluate models and assess the quality of representations
through data visualization and a variety of downstream prediction
tasks including sign and link prediction, network reconstruction,
and node multi-label classification. EvalNE streamlines evaluation
by providing automation and abstraction for tasks such as hyper-
parameter tuning and model validation, node and edge sampling,
node-pair embedding computation and performance reporting. The
framework can also evaluate approaches independently of the pro-
gramming language and with minimal user interaction. As a com-
mand line tool, configuration files describe the evaluation setup
and guarantee consistency and reproducibility. As an API, EvalNE
provides the building blocks to design any evaluation setup while
ensuring that common issues, such as data leakage, are ruled out.
Finally, to showcase the capabilities of our tool, we present the
results of a recent benchmark on representation learning for link
prediction conducted using EvalNE.

KEYWORDS
representation learning; evaluation; software; reproducibility

ACM Reference Format:
Alexandru Mara, Jefrey Lijffijt, and Tijl de Bie. 2021. Reproducible Evalua-
tions of Network Representation Learning Models Using EvalNE. In Pro-
ceedings of Workshop on Graph Learning Benchmarks at WWW21 (GLB21).
ACM, New York, NY, USA, 5 pages.

1 INTRODUCTION
Network representation learning or network embedding (NE) meth-
ods aim to learn low-dimensional representations of network nodes
as vectors, typically in the Euclidean space. These representations
can then be directly used for network visualization or to efficiently
perform a variety of downstream prediction tasks. These tasks
include sign prediction [e.g., 15, 26], link prediction [e.g., 9, 10],
network reconstruction [e.g., 25, 28], and node classification [e.g.,
17, 22]. A higher performance on these downstream tasks is then
generally associated with a better representation of the original
network.

The evaluation of embedding methods based on downstream
task results, however, is challenging, as it requires a number of

GLB21, Apr 2021, Ljubljana, Slovenia
2021.

additional steps and design choices which can confound the re-
sults, harm reproducibility, and are prone to errors. Firstly, for all
the above-mentioned tasks one must ensure that the input data is
preprocessed in a consistent manner, such that all methods can be
correctly evaluated. For instance, many NE methods require the
input network to contain a single connected component while some
do not. Additionally, the necessary sets of train and test data (nodes
or edges) can be selected according to a variety of approaches and
be of different sizes [14]. Two popular choices for edge sampling,
for example, are pseudo-random train-test split with certain con-
straints or timestamp-based sampling (i.e. use the most recent edges
for testing and the remaining ones for training). Another source
of evaluation inconsistencies is negative sampling. This technique
is commonly used in link prediction evaluation for generating the
negative class to be used in a subsequent binary classification of
edges and non-edges [11]. The negative sampling approach and
the relative sizes of the train and test non-edge sets vary between
scientific works. Yet another challenge in NE evaluation through
downstream tasks is that embedding methods provide different
types of outputs. While some approaches only output node em-
beddings [23], others can provide node-pair embeddings [21] or
even node similarities [10]. As such, specific pipelines for different
output types are required. Particularly important in this case is
the computation of node-pair embeddings from node embeddings
which has been shown to strongly impact method performance [9].
Finally, additional complexity stems from hyperparameter tuning,
not only for the evaluated embedding methods, but also for the
downstream task itself.

Contributions. To address the above-mentioned challenges and
simplify the evaluation of NE methods on downstream prediction
tasks, we propose EvalNE. The toolbox can be used both as a stan-
dalone application or integrated in existing code. As a command
line tool, it leverages configuration files that describe the complete
setup, from the tasks, datasets and methods to use, to preprocessing,
sampling, hyperparameter tuning and metrics to optimize. These
configuration files provide flexibility to define or replicate different
experimental setups and are sufficient for complete reproducibil-
ity. After evaluation, complete performance reports and graphics
are generated as well as log files detailing the issues encountered.
When integrated in existing code, EvalNE provides access to a se-
ries of classes and functions implementing the various components
required for method evaluation on different tasks. We note that the
library does not implement any particular NE method but provides
the necessary accessories to evaluate any off-the-shelf approach.
This is achieved by delegating method execution to the command
line interface. The framework does however implement popular



GLB21, Apr 2021, Ljubljana, Slovenia Alexandru Mara, Jefrey Lijffijt, and Tijl de Bie

Data 
Preprocessing

Data 
Sampling

LP/SP/NR 
Eval. Report

Model Training & Validation

End-to-end Predictors

Node-pair Emb.

Node Emb.

Binary
Classif.Node-to-edge 

NC 
Eval. Report

Data Viz.

Figure 1: Block diagram of EvalNE showing the methods
and tasks that can be evaluated. In the diagram down-
stream link prediction, sign prediction, network reconstruc-
tion and node classification tasks are abbreviated as LP, SP,
NR, and NC, respectively. Dashed blocks correspond to user-
specified methods with different output types while the re-
maining blocks are provided by EvalNE.

link prediction heuristics such as Adamic-Adar, preferential attach-
ment, Katz similarity, etc. for both directed and undirected networks.
Lastly, the practicality and flexibility of EvalNE are demonstrated
by showcasing a recent benchmark study ([14]) conducted using
our tool.

2 ARCHITECTURE
Conceptually, the design of EvalNE can be seen as a set of intercon-
nected building blocks which provide all the necessary components
for evaluation. This modular structure, shown in Figure 1, simpli-
fies code maintenance and addition of new features and allows
one to evaluate methods with different output types (node embed-
dings, node-pair embeddings, node similarities, etc.) on different
downstream tasks. Pragmatically, the blocks correspond to different
classes and functions as we summarize next.

Data Preprocessing. The toolbox builds upon the popular Net-
workX framework and offers additional functions for loading and
storing networks, pruning and relabelling nodes, removing self-
loops, sampling edges, restricting networks to the main connected
component and obtaining common statistics.

Data Sampling. For evaluation, sets of train, test and validation
data (nodes or edges) must be obtained from the input networks.
The particular sampling strategy varies for each downstream task.
In node classification, for instance, this is relatively straightfor-
ward as test/validation nodes can be sampled randomly. For the
remaining tasks, which require sets of edges, we provide a variety
of sampling methods. From timestamp-based to random sampling
that ensures the train edges continue to span a connected subgraph
(a key requirement for many NE methods). For negative sampling,
EvalNE provides two alternatives: the open world and the closed
world assumptions. The former considers the case where non-edges
are not known a priori and, thus, they must be sampled from the
train graph spanned by the train edges. In this case, the train non-
edges may overlap with the set of test edges. The latter considers the
case where non-edges are known a priori and, thus, train non-edges
cannot overlap with the test edges. The EvalSplit class encapsulates
the sampling and negative sampling functionalities.

Model Training & Validation. EvalNE provides specific classes
called Evaluators for each downstream task. These classes manage

model training with appropriate input data, hyperparameter tuning
based on grid search and collection of results. For link and sign
prediction and network reconstruction, methods providing node
similarities can be directly evaluated. Those that output node or
node-pair embeddings are evaluated through binary classification.
EvalNE supports any Scikit-learn binary classifier and implements
Logistic Regression with cross-validation as a default. Methods that
only output node embeddings additionally require a binary operator
to compute node-pair embeddings. For this, EvalNE implements the
following operators: average, Hadamard, weighted 𝐿1 and weighted
𝐿2 (see [9]).

Evaluation Report & Visualization. EvalNE can evaluate method
scalability through wall clock time, and accuracy through fixed-
threshold metrics and threshold curves. The library implements
over 10 different fixed-threshold metrics including AUC, preci-
sion, recall, and F-score, among others. Integrated threshold curves,
which present method performance for a range of threshold val-
ues, include precision-recall [13] and ROC [8] curves. Methods for
visualizing embeddings and graphs are also provided as well as
dimensionality reduction techniques. Method specific performance
is recorded in Results objects while global evaluation summaries
are provided through Scoresheet objects.

3 RELATION TO OTHER SOFTWARE
To the best of our knowledge, only three libraries present capabil-
ities similar to those of EvalNE. These are: OpenNE [24], GEM [6],
and Karateclub [20]. These frameworks, however, focus on pro-
viding implementations of a variety of state-of-the-art NE methods
rather than on evaluation. OpenNE provides limited functionality for
evaluating multi-label classification only, GEM additionally includes
basic evaluation for node visualization and link prediction, while
Karateclub aids the user in coding its own evaluation pipelines.
Unlike these frameworks, EvalNE is not limited to a pre-defined
set of NE method implementations. Instead, our framework can
evaluate any off-the-shelf approach (note that this includes all im-
plementations in the above-mentioned libraries). By leveraging
the power of the system’s command line, EvalNE can efficiently
evaluate methods independently of the programming language
or interface and with little to no user interaction. This feature is
present in both API and command line application uses. Addition-
ally, EvalNE is the only library currently available that provides full
automation of the evaluation pipeline including hyperparameter
tuning, and edge sampling.

4 SOURCE CODE AND DOCUMENTATION
The EvalNE source code is available on GitHub1 and is released
under the MIT free software license. GitHub also provides a variety
of mechanisms for community contribution such as: bug tracking,
feedback submission, and pull requests for integrating new features.
The library’s code style complies with PEP 8 and the docstring
documentation follows the standard Numpy format. The toolbox is
compatible with Python 2 and Python 3 and can be easily installed
using pip. Supported platforms include Linux, Apple macOS, and
Microsoft Windows. EvalNE only depends on a small number of

1EvalNE GitHub repository https://github.com/Dru-Mara/EvalNE



Reproducible Evaluations of Network Representation Learning Models Using EvalNE GLB21, Apr 2021, Ljubljana, Slovenia

open-source Python packages: NumPy, SciPy, NetworkX, Scikit-
learn, and Matplotlib. Other packages such as OpenNE or GEM are
optional and can provide implementations of different NE methods.

Regarding the toolbox documentation, this is automatically man-
aged and hosted online by Read the Docs2. Detailed instructions
on the installation and use both as an API and command line tool
are provided. Simple examples of the high-level use are also in-
cluded as well as more advanced examples of the low-level use
and integration with existing Python code. Finally, the library con-
tains pre-filled configuration files which allow one to reproduce
the experimental sections of several influential papers on network
representation learning.

5 EXPERIMENTAL EVALUATIONWITH
EVALNE

In this section we summarize the setup and main results of an em-
pirical study on network representation learning for link prediction
conducted using EvalNE. For complete evaluation details and re-
sults we kindly refer the reader to the original manuscript [14]. The
aim of this study was to establish the amount of progress made
in the area in recent years and determine the impact on method
performance of a variety of factors including: network structure,
hyperparameter tuning, train set size, edge sampling strategy, node
embedding operators and binary classifiers.

Methods. The experimental evaluation includes 6 link predic-
tion heuristics provided by EvalNE and a total of 23 implemen-
tations of 17 different NE methods. Whenever possible, original
implementations by the authors were evaluated together with oth-
ers available in the OpenNE and GEM libraries. Among the heuris-
tics we find Common Neighbours (CN), Jaccard Coefficient (JC),
Adamic-Adar (AA), Resource Allocation (RA), Preferential Attach-
ment (PA) and NE_heuristics, a method based on combining the
above-mentioned predictors in a 5-dimensional embedding. The NE
methods evaluated include Skip-Gram based approaches: DeepWalk
[17], Node2vec [9], Struc2vec [18], Metapath2vec [7] and Watch
Your Step [1]; matrix factorization approaches: Graph Factoriza-
tion [3], GraRep [5], HOPE [16], Laplacian Eigenmaps [4], Locally
Linear Embeddings [19], M-NMF [27] and AROPE [28]; neural net-
work approaches: SDNE [25], PRUNE [12] and VERSE [23]; and
probabilistic approaches: LINE [22] and CNE [10].

Data and Setup. The evaluation was conducted on 7 real-world
datasets from different domains including relational (StudentDB),
social (Facebook, BlogCatalog), collaboration (GR-QC, AstroPh),
biological (PPI) and language networks (Wikipedia). The number
of nodes in these graphs ranges between 102 and 104 and of edges
between 103 and 105. In all cases the networks were treated as
undirected and only the network structure was used to learn em-
beddings. Two experimental setups were designed. The first (LP1),
aimed to establish the best possible method performance by tuning
model hyperparameters via grid search. The second (LP2), was used
to identify the impact on performance of different edge sampling
techniques, node embedding operators, and binary classifiers. For
setup LP2 method hyperparameters were kept fixed and set to the
values recommended by the original authors of each NE method.
2EvalNE documentation https://evalne.readthedocs.io/en/latest/

Each experimental setup was described in one EvalNE configura-
tion file. In setup LP1 up to three different hyperparameters were
tuned for each method including the edge embedding operator used
to calculate node-pair embeddings from node embeddings (see [9]).
Link predictions were obtained through logistic regression on the
node-pair embeddings for all methods (node emb. pipeline in Figure
1) with the exception of AROPE and CNE, which directly provide
node similarities (end-to-end pipeline in Figure 1).

Results. Table 1 presents the average AUC performance of each
method over three independent repetitions of the experiment with
different sets of train and test edges. In this case experimental setup
LP1 was used. For the NEmethods embeddings of sizes 8, 32 and 128
were trained and the best results are presented. The best performing
method within each type of approach is highlighted in bold and
the overall best for each network on grey background.

Firstly, we observed that all methods improved in performance
as the embedding dimensionality increased. The only exception to
this is CNE which provided similar results across all dimensions
with the best being achieved for size 8. From the results in Table 1
we highlight the excellent performance, on most datasets, of the RA
and NE_heuristics approaches. The latter, together with GraRep,
achieves the highest average AUC amongst all methods of 0.963.
From their average performance over all networks and the average
AUC rankwe see that the top performers are: VERSE, NE_heuristics,
GraRep and CNE. Another important observation from the results
in Table 1 is that method performance varies significantly between
different implementations of the same NE methods (e.g. up to 11,7%
for LINE on StudentDB).

In the absence of additional data, such as node or edge attributes,
our experiments suggest an overall improvement in performance
as the order of proximity between nodes, captured by a model,
increases. GraRep, the best performing NE method, captures re-
lations of up to order 8. HOPE and AROPE, also top performers,
capture relations up to order 4 while the remaining first and second
order methods, present a lower performance. Exceptions to this
pattern are VERSE and CNE. The former is a second-order method
that employs a non-linear transformation able to preserve more
information from the original network. The latter is a first order
method that models structural information (node degrees) in a prior
allowing more flexibility to the embedding.

Regarding the relation between network structure and model
performance, we observe that most methods present high AUC
scores on networks with clear community structures such as Face-
book, AstroPH and GR-QC. On the other hand, k-partite networks
such as StudentDB pose a challenge to both heuristics and NE
methods. This is mainly due to the fact that similar node neighbour-
hoods in this case do not imply that two nodes should be connected.
Other networks such as BlogCatalog and Wikipedia present similar
structures with small diameters, high clustering coefficients and
large average degrees which results in cluttered representations
and, thus, low link prediction performance.

Additional experiments comparing setups LP1 and LP2 reveal
that hyperparameter tuning results in average improvements in
link prediction AUC of less that 1% while execution times increases
up to 30x. Popular random walk methods such as DeepWalk and



GLB21, Apr 2021, Ljubljana, Slovenia Alexandru Mara, Jefrey Lijffijt, and Tijl de Bie

Table 1: AUC scores and standard deviations over 3 experiment repetitions for setup LP1 where hyperparameters are tuned
and 𝑑 = 128 for all methods except CNE where 𝑑 = 8. Note that 0.000 in the table means < 0.0005. The best method within each
type of approach is highlighted in bold and the overall best for each column on grey background.

Methods StudentDB Facebook BlogCat. GR-QC AstroPH PPI Wikipedia Avg. AUC Avg. Rank
CN 0.630±0.011 0.992±0.001 0.948±0.000 0.959±0.001 0.990±0.000 0.863±0.003 0.900±0.002 0.860±0.210 17.21
JC 0.630±0.011 0.990±0.001 0.770±0.002 0.959±0.001 0.990±0.000 0.839±0.001 0.623±0.005 0.756±0.260 22.07
AA 0.630±0.011 0.993±0.001 0.952±0.000 0.959±0.001 0.991±0.000 0.867±0.003 0.919±0.002 0.864±0.211 13.57
PA 0.922±0.008 0.842±0.003 0.955±0.001 0.839±0.006 0.879±0.001 0.905±0.002 0.920±0.001 0.894±0.041 16.50
RA 0.630±0.011 0.994±0.001 0.958±0.000 0.959±0.001 0.991±0.000 0.867±0.003 0.931±0.002 0.867±0.212 10.64
NE_heuristics 0.966±0.004 0.993±0.000 0.956±0.001 0.976±0.003 0.993±0.000 0.927±0.001 0.929±0.004 0.963±0.026 5.00
DeepWalk 0.906±0.005 0.990±0.000 0.943±0.000 0.986±0.001 0.984±0.000 0.905±0.001 0.903±0.002 0.945±0.040 13.14
DeepWalk_opne 0.906±0.010 0.991±0.000 0.943±0.000 0.985±0.002 0.983±0.000 0.906±0.001 0.904±0.001 0.945±0.039 13.00
Node2vec 0.948±0.009 0.994±0.000 0.938±0.001 0.985±0.003 0.989±0.001 0.840±0.006 0.893±0.002 0.941±0.054 13.29
Node2vec_opne 0.897±0.004 0.991±0.001 0.929±0.001 0.986±0.002 0.992±0.000 0.900±0.001 0.901±0.001 0.942±0.043 13.57
Struc2vec 0.933±0.010 0.833±0.004 0.953±0.001 0.842±0.005 0.874±0.001 0.904±0.002 0.918±0.001 0.894±0.042 18.00
Metapath2vec 0.981±0.005 0.942±0.003 0.948±0.000 0.804±0.006 0.858±0.002 0.880±0.003 0.903±0.001 0.902±0.058 19.29
WYS 0.819±0.016 0.940±0.003 0.915±0.002 0.833±0.008 0.855±0.004 0.853±0.005 0.864±0.010 0.868±0.042 25.57
GF_opne 0.868±0.007 0.983±0.000 0.898±0.001 0.933±0.005 0.947±0.001 0.837±0.004 0.834±0.003 0.900±0.054 23.57
GraRep_opne 0.969±0.003 0.993±0.000 0.962±0.001 0.984±0.002 0.990±0.000 0.921±0.001 0.922±0.001 0.963±0.029 5.29
HOPE_gem 0.989±0.001 0.990±0.000 0.955±0.000 0.952±0.002 0.950±0.001 0.909±0.002 0.919±0.001 0.952±0.029 11.29
HOPE_opne 0.914±0.002 0.989±0.000 0.944±0.000 0.920±0.005 0.947±0.000 0.872±0.005 0.916±0.001 0.929±0.034 18.57
LE_gem 0.906±0.010 0.992±0.000 0.800±0.003 0.975±0.003 0.934±0.004 0.760±0.005 0.767±0.005 0.876±0.097 20.36
LE_opne 0.906±0.011 0.992±0.000 0.803±0.005 0.977±0.001 0.932±0.002 0.764±0.003 0.771±0.006 0.878±0.092 20.00
LLE_gem 0.890±0.008 0.990±0.000 0.704±0.002 0.970±0.004 0.895±0.006 0.726±0.008 0.741±0.005 0.845±0.114 23.57
M-NMF 0.944±0.009 0.992±0.000 0.936±0.001 0.983±0.002 0.983±0.000 0.878±0.008 0.913±0.001 0.947±0.040 13.36
AROPE 0.982±0.002 0.991±0.001 0.955±0.001 0.968±0.001 0.967±0.000 0.910±0.001 0.918±0.002 0.956±0.029 10.79
SDNE_gem 0.987±0.004 0.979±0.002 0.952±0.000 0.945±0.002 0.971±0.001 0.910±0.002 0.918±0.001 0.952±0.028 13.29
SDNE_opne 0.985±0.002 0.987±0.000 0.953±0.000 0.957±0.007 0.969±0.002 0.898±0.005 0.917±0.001 0.952±0.032 13.86
PRUNE 0.901±0.010 0.838±0.002 0.956±0.000 0.836±0.003 0.874±0.001 0.904±0.003 0.920±0.001 0.890±0.042 17.71
VERSE 0.935±0.010 0.994±0.001 0.956±0.002 0.990±0.002 0.996±0.000 0.919±0.002 0.919±0.002 0.959±0.033 4.57
LINE 0.963±0.004 0.993±0.001 0.931±0.000 0.984±0.002 0.991±0.000 0.877±0.002 0.882±0.002 0.946±0.048 12.64
LINE_opne 0.850±0.010 0.991±0.000 0.932±0.000 0.933±0.001 0.963±0.001 0.895±0.002 0.894±0.003 0.923±0.045 19.29
CNE 0.946±0.009 0.994±0.000 0.967±0.001 0.980±0.000 0.976±0.000 0.928±0.001 0.922±0.001 0.959±0.026 6.00

Node2vec, for which parameter tuning is tedious, show minimal
improvements in AUC.

In relation to the size of the training set, we observe that most
embedding methods capture the network structure well when pre-
sented with 50% or more of the network edges at training time.
Values below 50% generally result in poor representations. In this
same regime, link prediction heuristics perform significantly worse
than NE methods. Regarding the approach used to split edges in
train and test, four approaches provided by EvalNE were compared,
three pseudo random and one based on edge timestamps. Method
performance did not vary significantly when different random sam-
pling approaches were used. Timestamp based sampling, however,
impacted the performance of the link prediction heuristics posi-
tively and that of the NE methods negatively.

Finally, the evaluation also showed that averaging evaluation
results over several sets of train and test edges —in order to obtain
unbiased estimates of method performance— becomes less neces-
sary as the train network sizes surpass 103 edges. The standard
deviation of the AUC between any two repetitions of the experi-
ment with different random seeds was lower that 0.0004.

6 CONCLUSIONS
In this paper we introduced EvalNE, a Python toolbox for consistent
and reproducible evaluation of network representation learning
methods. In Sec. 5 we also demonstrated the potential of the li-
brary by using it to perform a large scale and easily reproducible
benchmark, evaluating several of its capabilities including hyperpa-
rameter tuning and train set sampling. We note, however, that the
use of EvalNE is not restricted to mid sized networks and the link
prediction task evaluated in Sec. 5. Indeed, in [2] we already used
EvalNE to conduct an experimental evaluation on networks with
millions of nodes and edges, and in [15] we used it to empirically
evaluate different signed network embedding methods. We thus
hope that EvalNE can become a standard for empirical evaluations
of graph representation learning methods on the wide range of
supported downstream tasks, and believe that this would greatly
benefit reproducibility in this fast growing research area. Our future
plans include the expansion of framework’s visualization capabili-
ties, support for evaluation of attributed networks, addition of new
downstream tasks (such as node classification via link prediction)
and the creation of a website tracking the benchmark results.



Reproducible Evaluations of Network Representation Learning Models Using EvalNE GLB21, Apr 2021, Ljubljana, Slovenia

ACKNOWLEDGEMENTS
The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Grant Agreement
no. 615517, from the Flemish Government under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen” programme,
and from the FWO (project no. G091017N, G0F9816N, 3G042220).

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alex Alemi. [n.d.]. Watch

Your Step: Learning Graph Embeddings Through Attention. arXiv:1710.09599
[2] F. Adriaens, A. Mara, J. Lijffijt, and T. De Bie. 2020. Block-Approximated Expo-

nential Random Graphs. In 2020 IEEE 7th International Conference on Data Science
and Advanced Analytics (DSAA). 70–80. https://doi.org/10.1109/DSAA49011.
2020.00019

[3] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski,
and Alexander J Smola. 2013. Distributed large-scale natural graph factorization.
In Proc. of WWW. 37–48.

[4] Mikhail Belkin and Partha Niyogi. 2002. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Proc. of NIPS. 585–591.

[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning graph repre-
sentations with global structural information. In Proc. of CIKM. 891–900.

[6] Siheng Chen, Sufeng Niu, Leman Akoglu, Jelena Kovacevic, and Christos Falout-
sos. 2017. Fast, Warped Graph Embedding: Unifying Framework and One-Click
Algorithm. CoRR abs/1702.05764 (2017).

[7] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. Metapath2Vec:
Scalable Representation Learning for Heterogeneous Networks. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (Halifax, NS, Canada) (KDD ’17). ACM, New York, NY, USA, 135–144.
https://doi.org/10.1145/3097983.3098036

[8] Tom Fawcett. 2004. ROCGraphs: Notes and Practical Considerations for Researchers.
Technical Report.

[9] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proc. of KDD. 855–864.

[10] Bo Kang, Jefrey Lijffijt, and Tijl De Bie. 2019. Conditional Network Embeddings.
Proc. of ICLR.

[11] Bhushan Kotnis and Vivi Nastase. 2017. Analysis of the Impact of Negative
Sampling on Link Prediction in Knowledge Graphs. CoRR abs/1708.06816 (2017).

[12] Yi-An Lai, Chin-Chi Hsu, Wen Hao Chen, Mi-Yen Yeh, and Shou-De Lin. 2017.
PRUNE: Preserving Proximity and Global Ranking for Network Embedding. In
Proc. of NIPS. 5257–5266.

[13] Ryan N. Lichtenwalter and N. V. Chawla. 2012. Link Prediction: Fair and Effective
Evaluation. In Proc. of ASONAM. 376–383.

[14] Alexandru Mara, Jefrey Lijffijt, and Tijl De Bie. 2020. Benchmarking network
embedding models for link prediction : are we making progress?. In Proc. of DSAA
(Sydney, Australia).

[15] Alexandru Mara, Yoosof Mashayekhi, Jefrey Lijffijt, and Tijl de Bie. 2020. CSNE:
Conditional Signed Network Embedding. In Proc. of CIKM (Virtual Event, Ireland).
1105–1114.

[16] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In Proc. of KDD. 1105–1114.

[17] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In Proc. of KDD. 701–710.

[18] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:
Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 385–394.

[19] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear Dimension-
ality Reduction by Locally Linear Embedding. Science 290, 5500
(2000), 2323–2326. https://doi.org/10.1126/science.290.5500.2323
arXiv:https://science.sciencemag.org/content/290/5500/2323.full.pdf

[20] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Karate Club: An API
Oriented Open-source Python Framework for Unsupervised Learning on Graphs.
In Proc of CIKM. 3125–3132.

[21] Wenzhuo Song, Shengsheng Wang, Bo Yang, You Lu, Xuehua Zhao, and Xueyan
Liu. 2018. Learning node and edge embeddings for signed networks. Neurocom-
puting 319 (2018), 42–54.

[22] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale information network embedding. In Proc. of WWW.
1067–1077.

[23] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.
VERSE: Versatile Graph Embeddings from Similarity Measures. In Proc. of WWW
(Lyon, France). 539–548.

[24] Cunchao TU, Cheng YANG, Zhiyuan LIU, and Maosong SUN. 2017. Network
representation learning: an overview. SCIENTIA SINICA Informationis 47, 8 (2017),
980–996.

[25] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-
ding. In Proc. of KDD. 1225–1234.

[26] Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu. 2017.
Signed network embedding in social media. In Proc. of SDM. 327–335.

[27] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang.
2017. Community Preserving Network Embedding. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence (San Francisco, California, USA)
(AAAI’17). AAAI Press, 203–209.

[28] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu.
2018. Arbitrary-Order Proximity Preserved Network Embedding. In Proc. of KDD.
2778–2786.

https://arxiv.org/abs/1710.09599
https://doi.org/10.1109/DSAA49011.2020.00019
https://doi.org/10.1109/DSAA49011.2020.00019
https://doi.org/10.1145/3097983.3098036
https://doi.org/10.1126/science.290.5500.2323
https://arxiv.org/abs/https://science.sciencemag.org/content/290/5500/2323.full.pdf

	Abstract
	1 Introduction
	2 Architecture
	3 Relation to other software
	4 Source Code and Documentation
	5 Experimental evaluation with EvalNE
	6 Conclusions
	References

