
Embedding alignment methods in dynamic networks
Kamil Tagowski

kamil.tagowski@pwr.edu.pl

Department of Computational

Intelligence, Wroclaw University of

Science and Technology

Wrocław, Poland

Piotr Bielak

piotr.bielak@pwr.edu.pl

Department of Computational

Intelligence, Wroclaw University of

Science and Technology

Wrocław, Poland

Tomasz Kajdanowicz

tomasz.kajdanowicz@pwr.edu.pl

Department of Computational

Intelligence, Wroclaw University of

Science and Technology

Wrocław, Poland

ABSTRACT
In recent years, dynamic graph embedding has attracted a lot of

attention due to its usefulness in real-world scenarios. In this paper,

we consider discrete-time dynamic graph representation learning,

where embeddings are computed for each time window, and then

are aggregated to represent the dynamics of a graph. However, in-

dependently computed embeddings in consecutive windows suffer

from the stochastic nature of representation learning algorithms

and are algebraically incomparable. We underline the need for em-

bedding alignment process and provide nine alignment techniques

evaluated on real-world datasets in link prediction and graph recon-

struction tasks. Our experiments show that alignment of Node2vec

embeddings improves the performance of downstream tasks up to

11 pp compared to the not aligned scenario.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions.

KEYWORDS
dynamic graphs, graph embedding, embedding alignment

ACM Reference Format:
Kamil Tagowski, Piotr Bielak, and Tomasz Kajdanowicz. 2021. Embedding

alignment methods in dynamic networks. InWoodstock ’18: ACM Symposium
on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY . ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Node representation learning is pervasive across multiple appli-

cations, like social networks [12, 20], spatial networks [23, 24] or

citation networks [8, 20]. The vast majority of node embedding

methods are trained in an unsupervised manner, providing an auto-

mated way of discovering node representations for static networks.

In many real-world scenarios, the network structure evolves and

node embedding depends on such dynamics. However, the body of

knowledge for dynamic graph node embedding methods is rather

unaddressed [3].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

Dynamic graph embedding can be performed in two settings:

continuous and discrete-time. The first one allows to handle a single

event that triggers updates of node embeddings. The latter setting

that is commonly utilized, involves the aggregation of graph data

into snapshots and computes embeddings for each one of them.

Such snapshot embeddings are further combined into a single node

embedding that captures the whole graph evolution. Unfortunately,

such decomposition of the embedding process suffers from the sto-

chastic nature of representation learning algorithms. Embeddings

of consecutive snapshots are algebraically incomparable due to

the transformations (artifacts) induced by the embedding meth-

ods. Therefore, there exists an research gap of how to deal with

these unwanted transformations. The expected outcome is to map

embeddings from particular snapshots into a common space. This

can be achieved by embedding alignment methods that mitigate

transformations and provide the ability to compare embeddings

along with consecutive snapshots. Performing downstream tasks

on nonaligned node embedding vectors may provide inconclusive

results.

In this paper, we focus on several node embedding alignment

methods that allow finding unified representation for nodes in dy-

namic networks using static network embedding approaches (in our

case: node2vec). Based on extensive experiments on several real-

world datasets, we demonstrate that node embedding alignment is

crucial and allows to increase performance up to 11 pp compared

to not aligned embeddings (node2vec). We summarize our contribu-

tions as follows: (1)We propose nine embedding alignment methods

for graph. (2) We provide a comprehensive evaluation showing that

alignment is an indispensable operation in dynamic graph embed-

ding based on a discrete approach, while dealing with node2vec

embeddings. Additionally, in the Appendix B, (3) we formulate

aligner performance measures (AMPs) for evaluating alignment

algorithms, regardless of the downstream tasks.

2 RELATEDWORKS
The literature on static node embedding methods is very rich [3].

We can distinguish approaches based on: random-walks (Node2vec

[12], metapath2vec [8]), graph neural networks (GCN [13], GAT

[22]) and matrix factorization (LLE [18], HOPE [16]). Despite be-

ing very powerful concepts, their applicability to dynamic graph

embeddings is very limited. Embedding alignment is a tool that

makes static embedding usable. Indeed, embedding alignment is

crucial in many machine learning areas, e.g., in machine translation

[11], cross-graph alignment [4, 5, 7], dynamic graph embedding

[2, 19, 21]. Embedding alignment techniques are often based on

solving Orthogonal Procrustes problem to obtain a linear transfor-

mation between pairs of embeddings [5]. We can also distinguish

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY K. Tagowski et al.

approaches that utilize adversarial training [4, 7]. Dynamic graph

embedding methods can update embeddings in an online manner

(arrival of single events) [14, 15] or batched one (graph snapshot)

[2, 10, 19, 21]. In the tNodeEmbed [19] and LCF [21] methods, align-

ment is achieved by solving the Orthogonal Procrustes problem

using all common nodes. In FILDNE [2], the authors do not follow

this scenario and they provide a mechanism for selecting only a

subset of nodes used in the alignment process.

3 GRAPH EMBEDDING ALIGNMENT

Figure 1: Graph embedding alignment in the whole graph
processing pipeline. For a dynamic graph in the form of
snapshots, compute node embeddings, then (optionally) de-
termine the reference nodes VREF and align the newest em-
bedding 𝐹𝑡−1,𝑡 to a given reference embedding (previous one
𝐹𝑡−2,𝑡−1, or thefirst one overall 𝐹0,1). Aligned embeddings im-
prove the performance of downstream tasks.

3.1 Notation and problem statement
We denote a dynamic graph as𝐺0,𝑇 = (V0,𝑇 , E0,𝑇), whereV0,𝑇 and

E0,𝑇 are the sets of all nodes (vertices) and edges observed between

timestamp 0 and𝑇 , respectively. We model a dynamic graph as a se-

ries of snapshots𝐺0,1,𝐺1,2, . . . ,𝐺𝑇−1,𝑇 . A node embedding function

𝑓 : V → R |V |×𝑑
maps every node 𝑣 ∈ V into a low-dimensional

vector representation of size 𝑑, 𝑑 << |V|, resulting in a node em-

bedding matrix 𝐹 , where each row represents an embedding of a

single node. Embedding alignment 𝑔 : R |V |×𝑑 → R |V |×𝑑
trans-

forms (aligns) a node embedding matrix 𝐹 respective to another

one, producing an aligned node embedding matrix 𝐹 ∗. The method

is trained on the observed change of embeddings for a subset of

nodes (reference nodesVREF ⊆ V).

3.2 The importance of embedding alignment
Node embedding methods encode the structure of graphs in low-

dimensional node representation vectors. The final form of the

embedding space and the actual positions of node vectors highly

depend on the particular method, e.g., in random walk-based meth-

ods (like node2vec), there are three sources: (1) the stochastic nature

of random walk generation, (2) the random initialization of em-

bedding vectors, and (3) the order of node-context pairs used for

training the Skip-gram model. It results in the situation that calcu-

lating embeddings for the same graph twice, using the samemethod

hyperparameters, we observe that the node embeddings in the sec-

ond run end up in different positions. Deformations of embeddings

may be caused by wide family of geometric transformations. For

simplicity, we hypothesize that it is enough to consider a subset

of linear transformations – translation, scaling, and rotations (see:

Figure 2). These are examples of affine transformations, i.e., com-

posed of linear transformations and translations of the embedding

space. In such situations, two embeddings of the same node are

incomparable.

Figure 2: Embedding the same graph twice.

The problem becomes fundamental in dynamic graph embedding,

where representations are computed for every snapshot indepen-

dently. In downstream tasks, these embeddings are combined to

obtain a representation for the whole dynamic graph. To achieve a

rational combination of snapshots’ embeddings, we are forced to

align them. All rotations, scaling, and translations must be elim-

inated (see: Figure 3). Proper alignment requires some transfor-

mation anchors (nodes). Sophisticated methods may automatically

learn to perform the alignment against the common nodes between

consecutive graphs. Notwithstanding, we developed amuch simpler

and computationally less complex methodology to select a subset

of common nodes present in both graph snapshots. It significantly

widens the applicability of the alignment to large scale networks.

Our intuition is that nodes whose local structure has significantly

changed, should not have been used to perform the alignment. The

selection of appropriate reference nodes influences the performance

of downstream tasks.

Figure 3: Embedding of dynamic graph snapshotswith align-
ment method applied.

3.3 Dynamic graph embedding alignment
methods

The embedding alignment problemmight be addressed in twomajor

ways: either (i) using post-hoc alignment of already computed em-

bedding matrices, or (ii) adding an auxiliary loss to the embedding

Embedding alignment methods in dynamic networks Woodstock ’18, June 03–05, 2018, Woodstock, NY

method that ensures alignment of node embeddings. The first one

assumes the situation where all embeddings of consecutive static

networks are already computed and the networks are not available

at the time of dynamic embedding. On the other hand, the latter

setting benefits from the availability of two network snapshots as

it can address embedding deformation artifacts. In this work, we

consider the post-hoc setting only leaving the second approach for

the future work. To keep our proposed alignment methods compu-

tationally trackable, we focus in this work on the methods inspired

by matrix alignment using the Orthogonal Procrustes problem [19].

Thus, we omit computationally expensive methods like [7].

Given two matrices 𝐴 ∈ R𝑛×𝑑 and 𝐵 ∈ R𝑛×𝑑 with matching

rows, the Orthogonal Procrustes method find a transformation

matrix 𝑄 such that: argmin𝑄 :𝑄⊺𝑄=𝐼 | |𝐵𝑄 −𝐴| |2
2
. It can be solved as

𝑄opt = 𝑈𝑊 ⊺ with𝑈 Σ𝑊 ⊺ being the Singular Value Decomposition

(SVD) of 𝐵⊺𝐴. In the case of dynamic graph embedding alignment,

the 𝐴 and 𝐵 matrices are two node embeddings.

As pointed out in Section 3.2, for dynamic graphs, we will select

a subset of nodes, whose characteristics were the same (or at least

similar) in both graph snapshots. Although, for completeness, we

evaluate also the approach with all common nodes as reference

nodes and call it Procrustes Aligner (PA).
A simple yet quite restrictive approach, called Procrustes Un-

changed Aligner (PUA), is to select all nodes whose neighbor-

hood does not change between snapshots, i.e., nodes having the

same neighbors in both snapshots.

Another method for selecting only a subset of nodes as the

reference nodes was already presented in FILDNE [2]. The authors

proposed to use a node’s activity (activity function), in the form

of the multi-degree centrality, and then compare these activities in

both snapshots using a scoring function to finally obtain a nodes’

score 𝑠 . We evaluated this approach in our experiments as FILDNE
Aligner (FA).

We further explore this idea and propose to apply other activity

functions. Due to the fact that the embedding is performed on

dynamic graphs, we propose to utilize temporal (dynamic) node

centrality measures for the activity functions (as in [25]): temporal

betweenness TB, temporal closeness TC, temporal k-shell score

TK, and temporal degree deviation TDD. We choose L1-norm as

the scoring function: 𝑠 (𝑎 (𝑣)
𝑡−1, 𝑎

(𝑣)
𝑡) = |𝑎 (𝑣)

𝑡−1 − 𝑎
(𝑣)
𝑡 |.

We also further develop another perspective of the scoring func-

tion that deeper exploits the structural graph properties, instead

of node activity only. The Edge Jaccard Aligner (EJA) computes

the Jaccard distance of neighbouring edges for every node existing

in two snapshots:

𝑠 (𝐸 (𝑣)
𝑡−1, 𝐸

(𝑣)
𝑡) = 1 −

|𝐸 (𝑣)
𝑡−1 ∩ 𝐸

(𝑣)
𝑡 |

|𝐸 (𝑣)
𝑡−1 ∪ 𝐸

(𝑣)
𝑡 |

, (1)

where 𝐸
(𝑣)
𝑡 are edges in the snapshot 𝐺𝑡−1,𝑡 connected to node 𝑣 .

The last proposed aligner is the Embedding Neighbor Jaccard
Aligner (ENJA), which utilizes the computed node embeddings.

For all nodes existing in two snapshots, it extracts 𝑛 percent of the

closest neighbors in both embedding spaces, and then computes

the Jaccard distance of neighbor sets:

𝑠 (𝐹 (𝑣)
𝑡−1, 𝐹

(𝑣)
𝑡) = 1 −

|CN𝑛 (𝐹 (𝑣)
𝑡−1) ∩ CN𝑛 (𝐹 (𝑣)

𝑡) |

|CN𝑛 (𝐹 (𝑣)
𝑡−1) ∪ CN𝑛 (𝐹 (𝑣)

𝑡) |
, (2)

where CN𝑛 (𝐹 (𝑣)
𝑡) is the set of the top𝑛 percent of closest neighbors

of node 𝑣 in the the embedding 𝐹𝑡 .

We still need to select the actual reference nodes based on the

computed nodes’ scores. In our experiments, we consider the top
percent scenario from FILDNE [2] as the other ones can be equiv-

alently applied. We select the top p percent of the lowest scores:

select(𝑆,V) = VREF ⊆ sort𝑆 (V), s.t. |VREF | = p|V|, where 𝑆 are

the node scores.

4 EXPERIMENTS
We evaluate all the proposed alignment methods on nine real-world

datasets (see: Appendix A) on two downstream tasks: link prediction

and graph reconstruction. The code, as well as the computational

environment configuration (DVC pipeline), is made publicly avail-

able at https://gitlab.com/tgem/embedding-alignment to ensure

reproducibility.

4.1 Node embeddings
To compute node embeddings we utilize the Node2vec method

implemented in the PyTorch Geometric library [9]. We embed each

snapshot separately. Using the Hyperopt optimizer [1] (restricted

to 200 iterations), we performed Node2vec hyperparameter search.

We recomputed all embeddings 25 times to handle the stochastic

nature of Node2vec (random initialization and random walks). The

obtained embeddings were evaluated on a link prediction task on

the same snapshot, i.e., embedding 𝐹𝑡−1,𝑡 was evaluated against

graph 𝐺𝑡−1,𝑡 for all snapshots.

4.2 Embedding aggregation
In our setting, all downstream tasks require a single embedding for

a given node that captures its whole history in the dynamic graph.

Hence, we need to combine nodes’ embeddings from all snapshots.

There are several approaches, like the simple averaging, convex

combination with Bayesian inference [2], exponential decaying, lin-

ear combination [21], or deep neural networks [10, 19]. We decided

to choose the most computationally efficient one – averaging node

embedding vectors from all snapshots.

4.3 Embedding alignment
We evaluate all the proposed aligners (Section 3.3) accompanied

with not aligned embeddings N/AL as a baseline. As shown in Fig-

ure 1, one could either align a given snapshot embedding 𝐹𝑡−1,𝑡
to its previous one 𝐹 ∗

𝑡−2,𝑡−1 or the first embedding overall 𝐹0,1.
We decided to use the latter setting, as it provides a common ref-

erence space for all the following snapshots. Moreover, we per-

formed a grid search on the link prediction task using aggregated

embeddings. The percent parameter was evaluated for a range

𝑝 ∈ {0.1, 0.2, . . . , 0.9} and (for ENJA aligner) the parameter 𝑛 was

evaluated for following values: 𝑛 ∈ {0.1, 0.2, . . . 1.0}.

https://gitlab.com/tgem/embedding-alignment

Woodstock ’18, June 03–05, 2018, Woodstock, NY K. Tagowski et al.

4.4 Link prediction
Setup. Link prediction evaluation predicts the existence of edges

in the last snapshot based on previous ones. We combine the snap-

shot embeddings 𝐹0,1, . . . , 𝐹𝑇−2,𝑇−1 using average operator. The

link prediction dataset is generated from the last snapshot 𝐺𝑇−1,𝑇 ,
with edges in the graph as existing links (class 1). Additionally, we

sample an equal number of non-existing edges (class 0). We split

the dataset into train (75%) and test (25%). Using edge represen-

tations, obtained from the Hadamard product, we train a Logistic

Regression classifier. To measure the performance, we report the

mean and standard deviation of the AUC metric over 25 runs.

Results. The results can be found in Table 1 (upper half). Notice

that for the vast majority of cases, the alignment of node embed-

dings improves the overall link prediction performance. We can

gain up to 10 and 11pp (bitcoin-alpha with EJA, enron-employees

with ENJA) over non-aligned embeddings. In the case of the Pro-

crustes Unchanged aligner (PUA), we observe that five out of nine

datasets could not be aligned. This occurs because this aligner relies

on nodes, whose neighborhood was precisely the same between

snapshots and for those datasets there were snapshot pairs with

an empty set of reference nodes. Moreover, such a restrictive se-

lection criterion affects the performance – see bitcoin-alpha and

bitcoin-otc, where the aligned embeddings perform worse than

not aligned ones (−0.95pp and −0.44pp, respectively). On the other

hand, the biggest loss of −1.03pp was for hypertext using ENJA,

but comparing the standard deviations of the results ENJA pro-

vides a more robust embedding. Among the best aligners we find

Temporal Betweenness (fb-forum, fb-messages, ppi), Edge Jaccard

(radoslaw-email, bitcoin-alpha) and Embedding Neighbor Jaccard

(enron-employees, bitcoin-otc).

4.5 Graph reconstruction
Setup. Graph reconstruction evaluation aims at reproducing the

graph structure based on nodes’ embedding. In our case, we expect

to reconstruct the whole dynamic graph𝐺0,𝑇 from the dynamic em-

bedding of all snapshots 𝐹0,𝑇 = Avg(𝐹0,1, . . . , 𝐹𝑇−1,𝑇). We compute

the mean Average Precision score (mAP) for graphs [6]. This metric

captures local graph properties, i.e. for any node and its embedding

vector it checks how many of the nearest vectors in the embed-

ding space (in the sense of euclidean norm) are actually first-order

neighbors of this node (see FILDNE [2] for details). Similarly to link

prediction results, we also report the mean and standard deviation

of the mAP metric over 25 runs.

Results. The results can be found in Table 1 (lower half). For all

but one case, we observe an improvement in the mAP metric values

– up to about 8 pp (for enron-employees with PA and hypertext with

TB). The only worse result occurs in hypertext with EJA (−0.53
pp). The best performing aligners are Procrustes (bitcoin-otc, fb-

messages, enron-employees, ppi) and Temporal Betweenness (fb-

forum, hypertext, radoslaw-email).

Overall, all the detailed results obtained in our study over em-

bedding alignment methods allow claiming that (1) alignment is

essential for embedding algorithms and (2) provide superior results

in downstream tasks like link prediction and graph reconstruction.

Table
1:D

ow
nstream

task
results

(link
prediction

and
graph

reconstruction).N
/A

L
denotes

evaluation
of

notaligned
em

beddings
and

×
denotes

a
scenario

w
here

em
beddings

could
notbe

aligned
due

to
m
issing

reference
nodes.W

e
presentvalues

as
the

m
ean

and
standard

deviations
over

25
em

bedding
retrains

w
ith

gain
(or

loss)of
aligned

em
beddings

over
not

aligned
ones

(diff
erence

of
m
ean

values)in
parenthesis.B

old
values

m
ark

the
best

results
for

a
single

dataset.W
e
perform

ed
a
Friedm

an
testw

ith
N
em

enyipost-hoc
to

confi
rm

thatallalignm
entm

ethods
are

statistically
diff

erentfrom
N
/A

L
case.T

here
w
ere

no
statistically

signifi
cantdiff

erences
betw

een
alignm

entm
ethods.T

he
"∗"sym

boldenotes
m
ethods

thatare
signifi

cantly
w
orse

than
the

bestm
ethod.

b
i
t
c
o
i
n

b
i
t
c
o
i
n

f
b

f
b

e
n
r
o
n

h
y
p
e
r
t
e
x
t

r
a
d
o
s
l
a
w

o
g
b
l

p
p
i

A
l
i
g
n
e
r

a
l
p
h
a

o
t
c

f
o
r
u
m

m
e
s
s
a
g
e
s

e
m
p
l
o
y
e
e
s

e
m
a
i
l

c
o
l
l
a
b

Link prediction (AUC)
N
/
A
L

4
7
.
7
2±

1
4
.
4
4

7
0
.
1
9±

5
.
6
3
∗

8
3
.
2
9±

2
.
8
0
∗

5
9
.
5
0±

6
.
8
0
∗

7
4
.
2
9±

3
.
9
5
∗

8
7
.
9
9±

1
2
.
8
3

8
4
.
3
2±

1
.
3
4
∗

8
1
.
2
4±

0
.
4
5
∗

5
9
.
0
8±

0
.
8
0
∗

P
A

5
0
.
8
0±

1
3
.
9
5(+

3
.
0
8)

7
9
.
3
7±

2
.
8
3(+

9
.
1
8)

9
0
.
3
6±

1
.
3
6(+

7
.
0
7)

6
4
.
4
6±

8
.
3
3(+

4
.
9
6)

8
4
.
4
8±

1
.
3
7(+

1
0
.
1
9)

8
7
.
5
6±

6
.
3
1(−

0
.
4
3)

9
2
.
8
9±

0
.
3
8(+

8
.
5
7)∗

82
.48

±
0
.53(+

1
.
2
4)

6
0
.
2
2±

0
.
7
8(+

1
.
1
4)

P
U
A

4
6
.
7
7±

1
4
.
1
7(−

0
.
9
5)

6
9
.
7
5±

5
.
4
1(−

0
.
4
4)∗

8
3
.
7
2±

2
.
5
3(+

0
.
4
3)∗

×
×

×
8
6
.
5
5±

1
.
0
5(+

2
.
2
3)∗

×
×

F
A

5
0
.
9
1±

1
4
.
7
8(+

3
.
1
9)

7
7
.
4
8±

4
.
7
6(+

7
.
2
9)

9
0
.
4
7±

1
.
2
8(+

7
.
1
8)

6
3
.
6
0±

6
.
6
1(+

4
.
1
0)

8
3
.
0
9±

1
.
3
9(+

8
.
8
0)∗

8
7
.
9
5±

5
.
5
9(−

0
.
0
4)

9
2
.
9
6±

0
.
3
8(+

8
.
6
4)

8
2
.
4
0±

0
.
6
7(+

1
.
1
6)

6
0
.
2
6±

0
.
7
4(+

1
.
1
8)

T
B

5
3
.
4
2±

1
3
.
3
5(+

5
.
7
0)

7
8
.
9
1±

3
.
7
5(+

8
.
7
2)

91
.07

±
1
.37(+

7
.
7
8)

66
.79

±
6
.74(+

7
.
2
9)

7
9
.
8
3±

2
.
0
4(+

5
.
5
4)∗

8
8
.
9
5±

4
.
6
8(+

0
.
9
6)

9
2
.
7
0±

0
.
4
0(+

8
.
3
8)∗

8
2
.
1
9±

0
.
5
3(+

0
.
9
5)

60
.53

±
0
.57(+

1
.
4
5)

T
C

5
5
.
2
1±

1
2
.
6
1(+

7
.
4
9)

7
8
.
0
2±

3
.
7
5(+

7
.
8
3)

9
0
.
0
3±

1
.
9
0(+

6
.
7
4)

6
4
.
8
5±

7
.
2
6(+

5
.
3
5)

8
3
.
1
0±

2
.
0
8(+

8
.
8
1)∗

9
0
.
3
7±

4
.
4
5(+

2
.
3
8)

9
2
.
7
8±

0
.
4
2(+

8
.
4
6)∗

8
2
.
0
3±

0
.
5
1(+

0
.
7
9)∗

5
9
.
8
0±

0
.
6
8(+

0
.
7
2)∗

T
K

5
6
.
9
1±

1
2
.
7
7(+

9
.
1
9)

7
9
.
2
8±

2
.
8
2(+

9
.
0
9)

9
0
.
7
1±

1
.
6
4(+

7
.
4
2)

6
2
.
6
8±

6
.
3
1(+

3
.
1
8)

8
3
.
5
0±

0
.
9
7(+

9
.
2
1)∗

9
0
.
4
2±

2
.
0
2(+

2
.
4
3)

9
2
.
9
3±

0
.
3
7(+

8
.
6
1)∗

8
2
.
4
1±

0
.
5
5(+

1
.
1
7)

6
0
.
1
1±

0
.
8
0(+

1
.
0
3)

T
D
D

5
6
.
9
1±

1
2
.
7
7(+

9
.
1
9)

7
9
.
2
8±

2
.
8
2(+

9
.
0
9)

9
0
.
7
1±

1
.
6
4(+

7
.
4
2)

6
2
.
6
8±

6
.
3
1(+

3
.
1
8)

8
3
.
5
0±

0
.
9
7(+

9
.
2
1)∗

90
.42

±
2
.02(+

2
.
4
3)

9
2
.
9
3±

0
.
3
7(+

8
.
6
1)∗

8
2
.
4
1±

0
.
5
5(+

1
.
1
7)

6
0
.
1
1±

0
.
8
0(+

1
.
0
3)

E
J
A

57
.75

±
12
.10(+

1
0
.
0
3)

7
9
.
0
6±

3
.
9
5(+

8
.
8
7)

8
9
.
6
4±

1
.
7
3(+

6
.
3
5)∗

6
3
.
1
7±

7
.
6
9(+

3
.
6
7)

8
4
.
4
6±

1
.
2
5(+

1
0
.
1
7)

8
8
.
5
5±

5
.
0
0(+

0
.
5
6)

93
.23

±
0
.31(+

8
.
9
1)

8
2
.
4
2±

0
.
6
5(+

1
.
1
8)

6
0
.
1
4±

0
.
7
7(+

1
.
0
6)

E
N
J
A

5
6
.
6
0±

1
2
.
0
6(+

8
.
8
8)

79
.67

±
2
.87(+

9
.
4
8)

9
0
.
5
6±

1
.
4
9(+

7
.
2
7)

6
4
.
7
0±

7
.
9
3(+

5
.
2
0)

85
.29

±
1
.29(+

1
1
.
0
0)

8
6
.
9
6±

4
.
8
0(−

1
.
0
3)

9
3
.
0
2±

0
.
4
3(+

8
.
7
0)

8
2
.
3
8±

0
.
4
6(+

1
.
1
4)

6
0
.
2
6±

0
.
7
5(+

1
.
1
8)

b
i
t
c
o
i
n

b
i
t
c
o
i
n

f
b

f
b

e
n
r
o
n

h
y
p
e
r
t
e
x
t

r
a
d
o
s
l
a
w

o
g
b
l

p
p
i

A
l
i
g
n
e
r

a
l
p
h
a

o
t
c

f
o
r
u
m

m
e
s
s
a
g
e
s

e
m
p
l
o
y
e
e
s

e
m
a
i
l

c
o
l
l
a
b

Graph Reconst. (mAP)

N
/
A
L

2
5
.
1
8±

0
.
2
0
∗

2
8
.
0
9±

0
.
3
6
∗

1
1
.
3
0±

0
.
2
9
∗

1
4
.
4
3±

0
.
1
9
∗

4
4
.
5
3±

1
.
8
5
∗

5
2
.
4
8±

1
.
1
5
∗

3
8
.
8
5±

1
.
1
9
∗

1
1
.
7
3±

0
.
0
5
∗

8
.
9
0±

0
.
0
7
∗

P
A

2
7
.
4
0±

0
.
2
5(+

2
.
2
2)

30
.61

±
0
.31(+

2
.
5
2)

1
4
.
0
8±

0
.
3
2(+

2
.
7
8)∗

16
.05

±
0
.24(+

1
.
6
2)

52
.53

±
0
.90(+

8
.
0
0)

5
7
.
4
6±

0
.
7
4(+

4
.
9
8)

4
5
.
2
7±

0
.
4
2(+

6
.
4
2)∗

11
.99

±
0
.04(+

0
.
2
6)

9
.43

±
0
.05(+

0
.
5
3)

P
U
A

2
5
.
2
1±

0
.
2
8(+

0
.
0
3)∗

2
8
.
2
3±

0
.
3
9(+

0
.
1
4)∗

1
1
.
5
6±

0
.
3
6(+

0
.
2
6)∗

×
×

×
4
2
.
9
4±

0
.
5
9(+

4
.
0
9)∗

×
×

F
A

2
6
.
4
4±

0
.
2
4(+

1
.
2
6)∗

3
0
.
4
4±

0
.
3
5(+

2
.
3
5)∗

1
4
.
1
5±

0
.
3
1(+

2
.
8
5)

1
5
.
9
0±

0
.
2
3(+

1
.
4
7)

5
1
.
4
6±

1
.
0
9(+

6
.
9
3)∗

5
9
.
0
4±

0
.
9
3(+

6
.
5
6)

4
5
.
9
1±

0
.
4
3(+

7
.
0
6)∗

1
1
.
9
7±

0
.
0
5(+

0
.
2
4)

9
.
0
6±

0
.
0
9(+

0
.
1
6)∗

T
B

2
7
.
3
4±

0
.
2
8(+

2
.
1
6)

3
0
.
5
3±

0
.
3
4(+

2
.
4
4)

14
.35

±
0
.38(+

3
.
0
5)

1
5
.
9
8±

0
.
2
5(+

1
.
5
5)

5
0
.
9
3±

1
.
0
6(+

6
.
4
0)∗

60
.42

±
0
.87(+

7
.
9
4)

46
.67

±
0
.41(+

7
.
8
2)

1
1
.
8
8±

0
.
0
4(+

0
.
1
5)∗

9
.
3
9±

0
.
0
5(+

0
.
4
9)

T
C

27
.48

±
0
.26(+

2
.
3
0)

3
0
.
5
3±

0
.
3
2(+

2
.
4
4)

1
4
.
1
1±

0
.
3
1(+

2
.
8
1)

1
5
.
7
6±

0
.
2
3(+

1
.
3
3)∗

5
2
.
4
6±

1
.
1
2(+

7
.
9
3)

5
5
.
7
6±

0
.
8
8(+

3
.
2
8)∗

4
6
.
2
2±

0
.
5
2(+

7
.
3
7)

1
1
.
8
5±

0
.
0
4(+

0
.
1
2)∗

9
.
1
9±

0
.
0
8(+

0
.
2
9)∗

T
K

2
6
.
7
0±

0
.
3
1(+

1
.
5
2)∗

3
0
.
4
7±

0
.
3
2(+

2
.
3
8)

1
3
.
9
7±

0
.
3
2(+

2
.
6
7)∗

1
5
.
9
0±

0
.
2
4(+

1
.
4
7)∗

5
2
.
1
6±

1
.
0
7(+

7
.
6
3)

5
4
.
6
0±

0
.
7
0(+

2
.
1
2)∗

4
4
.
6
4±

0
.
5
8(+

5
.
7
9)∗

1
1
.
9
8±

0
.
0
5(+

0
.
2
5)

9
.
3
9±

0
.
0
5(+

0
.
4
9)

T
D
D

2
6
.
7
0±

0
.
3
1(+

1
.
5
2)∗

3
0
.
4
7±

0
.
3
2(+

2
.
3
8)∗

1
3
.
9
7±

0
.
3
2(+

2
.
6
7)∗

1
5
.
9
0±

0
.
2
4(+

1
.
4
7)∗

5
2
.
1
6±

1
.
0
7(+

7
.
6
3)

5
4
.
6
0±

0
.
7
0(+

2
.
1
2)∗

4
4
.
6
4±

0
.
5
8(+

5
.
7
9)∗

1
1
.
9
8±

0
.
0
5(+

0
.
2
5)

9
.
3
9±

0
.
0
5(+

0
.
4
9)

E
J
A

2
6
.
7
0±

0
.
3
0(+

1
.
5
2)∗

3
0
.
3
8±

0
.
3
4(+

2
.
2
9)∗

1
3
.
8
4±

0
.
3
0(+

2
.
5
4)∗

1
5
.
9
6±

0
.
2
2(+

1
.
5
3)

5
1
.
1
0±

1
.
0
8(+

6
.
5
7)∗

5
1
.
9
5±

0
.
5
1(−

0
.
5
3)∗

4
6
.
0
4±

0
.
4
2(+

7
.
1
9)

11
.99

±
0
.04(+

0
.
2
6)

9
.
3
9±

0
.
0
5(+

0
.
4
9)

E
N
J
A

2
6
.
7
0±

0
.
2
5(+

1
.
5
2)∗

3
0
.
5
4±

0
.
3
0(+

2
.
4
5)

1
4
.
1
0±

0
.
2
9(+

2
.
8
0)

1
5
.
9
2±

0
.
2
6(+

1
.
4
9)∗

5
1
.
7
0±

0
.
8
7(+

7
.
1
7)

5
7
.
4
2±

0
.
8
5(+

4
.
9
4)∗

4
6
.
1
6±

0
.
5
7(+

7
.
3
1)

1
1
.
9
7±

0
.
0
4(+

0
.
2
4)

9
.
4
2±

0
.
0
5(+

0
.
5
2)

Embedding alignment methods in dynamic networks Woodstock ’18, June 03–05, 2018, Woodstock, NY

4.6 Impact of the node fraction taken in the
alignment process

In Table 1 we only reported the best scores for a particular aligner.

We performed also grid search over parameter 𝑝 , see Section 4.3,

which describes percent of reference nodes taken from all common

nodes. We compared each result with 𝑃𝐴 aligner (its mean and std

result) that used all common nodes. It turned out that for bitcoin-

alpha, bitcoin-otc, fb-forum, fb-messages, ia-hypertext, ppi and

ogbl-collab datasets it was sufficient to take only 10 percent of

nodes, whereas for enron-employees 20 percent and for radoslaw-

email 30 of common nodes to achieve comparative results. Such

feature is especially crucial when dealing with large datasets, as it

shortens computation time of Orthogonal Procrustes.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we emphasize the importance of node embedding

alignment in dynamic graph embedding.We formulate three aligner

performance measures for the evaluation of alignment algorithms.

We propose several embedding alignment methods for dynamic

graphs. According to our experimental evaluation, alignment is an

indispensable operation in dynamic graph embedding based on the

discrete approach. Furthermore, embedding alignment improves the

performance of downstream tasks up to 11 pp compared to the not

aligned scenario. In terms of future work, we plan to exploit other

approaches of embedding alignment and these that are directed to

edges and subgraphs.

ACKNOWLEDGMENTS
The project was partially supported by The National Science Centre,

Poland, the research project no. 2016/21/D/ST6/02948 and statutory

funds of Department of Computational Intelligence.

REFERENCES
[1] James Bergstra, Daniel Yamins, and David Cox. 2013. Making a science of

model search: Hyperparameter optimization in hundreds of dimensions for vision

architectures. In International conference on machine learning. 115–123.
[2] Piotr Bielak, Kamil Tagowski, Maciej Falkiewicz, Tomasz Kajdanowicz, and

Nitesh V. Chawla. 2020. FILDNE: A Framework for Incremental Learning of

Dynamic Networks Embeddings. arXiv:1904.03423 [stat.ML]

[3] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Mur-

phy. 2020. Machine Learning on Graphs: A Model and Comprehensive Taxonomy.

arXiv preprint arXiv:2005.03675 (2020).
[4] Chaoqi Chen, Weiping Xie, Tingyang Xu, Yu Rong, Wen-bing Huang, Xinghao

Ding, Yue Huang, and Junzhou Huang. 2019. Unsupervised Adversarial Graph

Alignment with Graph Embedding. CoRR abs/1907.00544 (2019). arXiv:1907.00544

http://arxiv.org/abs/1907.00544

[5] Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, and Danai Koutra. 2020. CONE-
Align: Consistent Network Alignment with Proximity-Preserving Node Embedding.
Association for Computing Machinery, New York, NY, USA, 1985–1988. https:

//doi.org/10.1145/3340531.3412136

[6] Christopher De Sa, Albert Gu, Christopher Ré, and Frederic Sala. 2018. Repre-

sentation tradeoffs for hyperbolic embeddings. Proceedings of machine learning
research 80 (2018), 4460.

[7] Tyler Derr, Hamid Karimi, Xiaorui Liu, Jiejun Xu, and Jiliang Tang. 2019. Deep

Adversarial Network Alignment. CoRR abs/1902.10307 (2019). arXiv:1902.10307

http://arxiv.org/abs/1902.10307

[8] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable representation learning for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining. 135–144.

[9] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[10] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec:

Capturing network dynamics using dynamic graph representation learning.

Knowledge-Based Systems 187 (2020), 104816.
[11] Edouard Grave, Armand Joulin, and Quentin Berthet. 2019. Unsupervised

Alignment of Embeddings with Wasserstein Procrustes. In Proceedings of Ma-
chine Learning Research (Proceedings of Machine Learning Research, Vol. 89),
Kamalika Chaudhuri and Masashi Sugiyama (Eds.). PMLR, 1880–1890. http:

//proceedings.mlr.press/v89/grave19a.html

[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[13] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[14] John Boaz Lee, Giang Nguyen, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee

Koh, and Sungchul Kim. 2019. Dynamic Node Embeddings from Edge Streams.

arXiv:1904.06449 [cs.LG]

[15] Yao Ma, Ziyi Guo, Zhaochun Ren, Jiliang Tang, and Dawei Yin. 2020. Streaming

Graph Neural Networks. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval, SIGIR 2020, Virtual
Event, China, July 25-30, 2020, Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap

Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 719–728.

https://doi.org/10.1145/3397271.3401092

[16] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining. 1105–
1114.

[17] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[18] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction

by locally linear embedding. science 290, 5500 (2000), 2323–2326.
[19] Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node embedding over temporal

graphs. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence. AAAI Press, 4605–4612.

[20] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[21] Puja Trivedi, Alican Büyükçakır, Yin Lin, Yinlong Qian, Di Jin, and Danai Koutra.

2020. On Structural vs. Proximity-based Temporal Node Embeddings. (2020).

[22] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[23] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.

Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint
arXiv:1906.00121 (2019).

[24] Dongwei Xu, Chenchen Wei, Peng Peng, Qi Xuan, and Haifeng Guo. 2020. GE-

GAN: A novel deep learning framework for road traffic state estimation. Trans-
portation Research Part C: Emerging Technologies 117 (2020), 102635.

[25] En-Yu Yu, Yan Fu, Xiao Chen, Mei Xie, and Duan-Bing Chen. 2020. Identifying

critical nodes in temporal networks by network embedding. Scientific Reports 10,
1 (2020), 1–8.

A DATASETS
We perform experiments on nine real-world datasets (see Table 2).

Each of them is split based on the timestamp frequency: daily (ia-

hypertext), monthly (enron-employees, radoslaw-email, fb-forum,

fb-messages) and yearly (bitcoin-alpha, bitcoin-otc, ppi, ogbl-collab).

The total number of snapshots varies from 3 to 9. As dataset time

characteristics are not ideal and some of the generated snapshots

were too small, we performed the following operations: we merged

the first snapshot into the second one (bitcoin-alpha, bitcoin-otc,

fb-messages); we merged the last snapshot to the second last one,

as validation on tiny snapshots would be biased (bitcoin-alpha,

bitcoin-otc, employees, ia-radoslaw-email); we also ignored first

four snapshots (ppi, ogbl-collab), as merging them would result in

a much bigger time-span than other snapshots.

B ALIGNMENT PERFORMANCE MEASURES
We introduce a novel set of alignment performance measures (APM)

that constitute the criteria an alignment algorithm should meet. We

https://arxiv.org/abs/1904.03423
https://arxiv.org/abs/1907.00544
http://arxiv.org/abs/1907.00544
https://doi.org/10.1145/3340531.3412136
https://doi.org/10.1145/3340531.3412136
https://arxiv.org/abs/1902.10307
http://arxiv.org/abs/1902.10307
http://proceedings.mlr.press/v89/grave19a.html
http://proceedings.mlr.press/v89/grave19a.html
https://arxiv.org/abs/1904.06449
https://doi.org/10.1145/3397271.3401092

Woodstock ’18, June 03–05, 2018, Woodstock, NY K. Tagowski et al.

Table 2: Statistics of graph datasets. |V| - number of nodes,
|E | - number of edges, Directed - whether the graph is di-
rected or not

Dataset |V| |E | Directed Timespan Number of Snapshot

snapshots timespan

hypertext 113 20 818 × 2.5 days 3 1 day

enron-employees 151 50 572 × 37.9 months 6 6 months

radoslaw-email 167 82 927

√
9 months 9 1 month

fb-forum 899 33 720 × 5.5 months 5 1 month

fb-messages 1 899 61 734 × 7.2 months 7 1 month

bitcoin-alpha 3 783 24 186

√
5.2 years 5 1 year

bitcoin-otc 5 881 35 592

√
5.2 years 5 1 year

ppi 16 386 141 836 × 24 years 5 5 years

ogbl-collab 233 513 1 171 947 × 34 years 7 5 years

also propose measures to evaluate the fit of alignment methods to

criteria.

Overall, graph representation learningmethods derive low-dimensional

vector embeddings for different entities in the graph, i.e., nodes,

edges, or subgraphs. From now on, we will present a case of node

embedding approach, but it can be easily transfigured to edge or

subgraph related problems.

The aim of node embedding methods is, generally speaking, to

encode structural information in vector representations by placing

embeddings of similar nodes near in the embedding space and keep-

ing dissimilar nodes at a further distance. The definitions of "dis-

tance" and "similarity" as well as "structural information" depend

on the properties of the representation we want to achieve (e.g., Eu-

clidean distance, cosine similarity, considering first or second-order

neighborhoods).

The family of random walk-based embedding approaches (e.g.,

DeepWalk [17], Node2vec [12], metapath2vec [8]) explicitly pre-

serve the distances between nodes in the graph. Thus, we postulate

the first APM which is related to distances:

APM 1. The pairwise distances of vectors in the embedding space
should be preserved during alignment.

Changing the relative distances corrupts the information en-

coded by the embedding algorithm. To measure the magnitude of

changes in relative distances, we propose Pairwise Embedding
Distance (PED; see Equation 3). This performance measure quan-

tifies how the embedding alignment method mitigates translation

and rotation. High values of this metric indicate that the embedding

structure is corrupted during the alignment process. Contrary, if the

value is equal to zero (𝑃𝐸𝐷 (𝐹, 𝐹 ∗) = 0), the embedding is perfectly

preserved.

PED(𝐹, 𝐹 ∗) = 1

|V| ∗ (|V| − 1)
∑

(𝑢,𝑣) ∈V×V
𝑢≠𝑣

|𝐷 (𝐹) (𝑢, 𝑣)−𝐷 (𝐹 ∗) (𝑢, 𝑣) |,

(3)

where 𝐹 is the initial node embedding matrix, 𝐹 ∗ is the matrix after

alignment, | · | denotes the absolute value. For the distance measure

𝐷 (𝐹) (𝑢, 𝑣) between embeddings of nodes 𝑢 and 𝑣 in the embedding

matrix 𝐹 , we use the 𝐿2 distance, but one can employ other ones,

like the cosine distance.

Besides translation and rotation, we also consider the scaling

transformation, proposing the following APM.

APM 2. The scaling of distances between reference nodes after
alignment should be the same for all other nodes.

We propose the Scaling Score Distance (SSD), see Equation 4.

SSD(𝐹, 𝐹 ∗) = | 1

|VREF | ∗ (|VREF | − 1)
∑

(𝑢𝑅 ,𝑣𝑅) ∈VREF×VREF

𝑢𝑅≠𝑣𝑅

𝐷 (𝐹 ∗) (𝑢𝑅, 𝑣𝑅)
𝐷 (𝐹) (𝑢𝑅, 𝑣𝑅)

− 1

|V\VREF | ∗ (|V\VREF | − 1)
∑

(𝑢,𝑣) ∈(V\VREF)×(V\VREF)
𝑢≠𝑣

𝐷 (𝐹 ∗) (𝑢, 𝑣)
𝐷 (𝐹) (𝑢, 𝑣)

|.

(4)

We also address the requirement of preserving the same positions

of reference nodes in two snapshots of a dynamic graph. We assume

that the alignment is performed according to those nodes. This leads

us to our third APM:

APM 3. After the alignment of the embedding of the second snap-
shot, the vectors of reference nodes must be placed in the same positions
as in the embedding of the first snapshot.

Figure 4: Visualization of RND alignment performancemea-
sure. We compare two scenarios: (1) RND computed us-
ing non-aligned embedding and (2) RND computed using
aligned embeddings. We aggregate values across all datasets
and show that in the RND for aligned embeddings are lower
than for not aligned case. This indicates that the alignment
is successful.

We propose the Reference Nodes Distance (RND; see Equa-
tion 5).

RND(𝐹1, 𝐹 ∗2) =
1

|VREF |
∑

𝑢𝑅 ∈VREF

𝐷 (𝐹1,𝐹 ∗
2
) (𝑢𝑅), (5)

whereVREF is the set of reference nodes and 𝐷
(𝐹1,𝐹 ∗

2
) (𝑢𝑅) is the 𝐿2

distance between𝑢𝑅 ’s embedding vectors in 𝐹1 and 𝐹
∗
2
, respectively.

The most desired case assumes a score equal to zero.

Assuming that the embedding algorithm introduces rotations,

scaling, and translations, the alignment algorithm is performing

perfectly if all the proposed measures are equal to zero.

C EXPERIMENTAL EVALUATION OF APMS
We compute the metrics mentioned in Section B for all aligned

embeddings across all datasets and alignment algorithms. We ob-

serve that for the PED and SSD metrics we receive values close to

Embedding alignment methods in dynamic networks Woodstock ’18, June 03–05, 2018, Woodstock, NY

zero, which proves the alignment process preserves the information

encoded in the node embeddings. In the case of the RND metric,

we obtain values greater than zero, but after careful investigation,

we show that the distance between reference nodes decreases after

alignment, respective to the targeted embedding (see: Figure 4).

	Abstract
	1 Introduction
	2 Related works
	3 Graph embedding alignment
	3.1 Notation and problem statement
	3.2 The importance of embedding alignment
	3.3 Dynamic graph embedding alignment methods

	4 Experiments
	4.1 Node embeddings
	4.2 Embedding aggregation
	4.3 Embedding alignment
	4.4 Link prediction
	4.5 Graph reconstruction
	4.6 Impact of the node fraction taken in the alignment process

	5 Conclusions and future work
	Acknowledgments
	References
	A Datasets
	B Alignment performance measures
	C Experimental evaluation of APMs

