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ABSTRACT
Provenance graphs have been adapted for digital games and game
analytics and proved to be a powerful tool for capturing game
session data for complex games. Due to the own game nature, which
is composed by large amount and variety of data, game provenance
graphs are highly heterogeneous in terms of node and edge types
and their associated feature sets. Furthermore, game provenance
graphs are rich from intersections across feature sets from distinct
node types. However, most existing heterogeneous graph neural
network solutions rely on simple approaches to deal with varying
node types, such as projecting each type of node to the same n-
dimensional space. They assume that node types, and consequently
their composing features, to be independently distributed. In this
work, we present the Smoke Squadron Dataset, a game provenance
graph dataset containing game session graphs whose node types
share several common feature subsets. To address this challenging
heterogeneity, we propose a feature set based solution that allows
projecting distinct node types that leverage feature set intersection.
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1 INTRODUCTION
Provenance, which stands for the documented history of an object’s
life cycle[13], has been adapted for digital games and game analytics.
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Based on the Open Provenance Model, where provenance is repre-
sented by annotated graphs, the Provenance in Games (PinG) frame-
work enables game developers to record and track game session
data as game provenance graphs[9]. Since then, game provenance
graphs have been used for several Game Analytics tasks[10][8][7]
that may also leverage AI and MLmethods [2][11], including Graph
Representation Learning[15][14].

Digital games tend to generate large amounts of heterogeneous
data. This is due to characteristics such as the number of game
objects (characters, enemies, items, weapons, and many other),
events and their respective features. Figure 1 presents an example
of a provenance graph from a gameplay session of a prototype
racing game. Each node represents the state of a player’s avatar
(a car in the case of a racing game) and contains multiple features
associated with the current state. These features may encompass
attributes such as position of objects in a 2D or 3D game space,
current health points, amount of damage dealt, movement speed,
among many others. Additionally, some of these features might
be common among all objects (such as a 2D or 3D position) while
others might be specific to a group (characters and enemies have
health points but items does not) or individual objects (a character
with an unique skill). As game provenance graphs are able to capture
and track all objects as heterogeneous nodes and their associated
features, it is possible to observe distinct levels of intersections
across node types.

In Graph Representation Learning, Heterogeneous Graph Neural
Networks (HGNN) have been developed to deal with graphs with
distinct types of nodes and edges. However, to the best of our knowl-
edge, they usually rely on learning feature transformation matrices,
called here as type-specific projection matrices, as they map each
node type to a single d-dimensional space 𝑅𝐷 [18][17][1][3]. We
argue that this approach overlooks any relationship among features
of multiple node types, as each projection matrix transforms input
features of each type independently. This issue might be aggravated
when feature sets are not disjoint, i.e., feature sets from different
types of nodes intersect, since each projection matrix might project
similar feature subsets differently. Such feature set relationships
across node and edge types may occur more frequently as graphs
become the standard way of modeling more complex and rich do-
mains, bringing together new challenges.

To that end, we present the Smoke Squadron Dataset1, a game
provenance graph dataset containing several game sessions of
Smoke Squadron, a local multiplayer airplane battle arena game.
The dataset portrays five node types with intersecting feature sets,
as previously mentioned. We also present preliminary results on

1https://github.com/sidneyaraujomelo/smokesquadrondataset
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Figure 1: Example of provenance graph from a racing game prototype.

feature set-based solutions for projecting heterogeneous nodes into
a single d-dimensional feature space.

2 BACKGROUND
In this section we introduce briefly the Provenance in Games (PinG)
framework and its influence on node heterogeneity and address
existing HGNN approaches for dealing with node heterogeneity.

2.1 Provenance in Games
The Provenance in Games (PinG) framework adapts the Open Prove-
nance Model in the context of digital games by mapping game
objects into three provenance specific type of nodes: Agent, Ac-
tivity and Entity[9]. Agent nodes represent dynamic game objects
such as players, non-playable characters (NPCs), enemies, mon-
sters. Activity nodes represent actions and events such as jumping,
attacking, taking damage or dying. Entity nodes represent static
elements such as items, weapons, scenario objects. Also, each pair
of provenance node type also define a causal relationship through
labeled directed edges. For example, an edge between two Activities
A and B represent that “Activity B was triggered by Activity A”.
For conciseness sake, we refer to [9] for a complete description
on all edge types. Finally, nodes and edges recorded throughout a
game session compose a game provenance graph that documents
the whole session.

To enable gathering game provenance data during game sessions,
a plugin for the game engine Unity called PinGU implemented the
PinG framework[12]. Through PinGU, game developers can instru-
mentalize provenance data capture according to their needs and the
game’s nature. The game developers can define the granularity of

the provenance capture process by several aspects, such as how of-
ten an ongoing action or event should generate a new Activity node
and which features from each game object should be tracked. This
choice is made by the game developer, guided by a Game Analytics
task of interest.

In this context, we can illustrate how heterogeneous the result-
ing game provenance graphs can be. Consider a game with three
characters A, B, and C, with distinct gameplay mechanics, inter-
acting in a 3D environment through a set of actions. The resulting
game provenance graph should contain nodes for characters A, B, C,
and their respective features. Considering that each character has a
distinct gameplay mechanic, it is fair to assume that each character
has an associated feature related to that gameplay mechanic. Thus,
nodes from A, B and C are heterogeneous and contain different
feature sets. However, since they all interact in the same 3D envi-
ronment, these nodes should also have 3D positional features in
common. If we instantiate this example in industry-level games
such as League of Legends, we would have to account for more
than 150 characters.

This kind of node heterogeneity, in which nodes represent dif-
ferent objects but share intersecting feature sets, is the problem we
intend to address in this work.

2.2 Graph Definitions
This paper follows the following graph definitions and Table 1
brings the adopted notations.

Definition 2.1 (Graph). A graph is a tuple G = (V, E) where
V = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is the set of nodes and E is the set of edges. An
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Table 1: Table of notations

Notation Definition

R𝑛 n-dimensional space
a,a,A Scalar, vector, matrix
x𝑣 Input feature vector of node v
A Set
N (·) Neighborhood of a node
|·| Set cardinality

edge 𝑒𝑖 𝑗 ∈ E represents the connection between two different adjacent
nodes 𝑣𝑖 ∈ V and 𝑣 𝑗 ∈ V .

Definition 2.2 (Type). A type 𝓉 is a set of features F𝓉 that seman-
tically distinguish nodes or edges. 𝓉 defines a dimensional feature
space R |F𝓉 | .

Definition 2.3 (Homogeneous Graph). A homogeneous graph is a
graph G = (V, E) where each node 𝑣 ∈ V is associated to at most
one type 𝒶 and each edge 𝑒 ∈ E is associated to at most one type 𝓇.

Definition 2.4 (Heterogeneous Graph). A heterogeneous graph is
a graph G = (V, E) where nodes are associated with a type mapping
function 𝜙 : V → A and edges are associated with a type mapping
function𝜓 : E → R. A and R are sets of node types and edge types
where |A| + |R| > 2.

Definition 2.5 (Attributed Graph). An attributed graph is a graph
G = (V, E) where each node 𝑣 ∈ V of type 𝓉 is associated to a node
attribute vector x𝑣 ∈ R |F𝓉 | .

Definition 2.6 (Node Embedding). Given an attributed graph G =

(V, E), the node embedding of a node 𝑣 ∈ V is a 𝑑-dimensional node
representation h𝑣 ∈ R𝑑 with 𝑑 ≪ |V| that captures structural and
semantic information of 𝑣 .

2.3 Graph Neural Networks
Graph Neural Networks (GNNs) is a general framework for gener-
ating node embeddings for nodes 𝑣 ∈ V given a graph G = (V, E).
The GNN model relies on a Neural Message Passing (NMP) frame-
work, in which vector messages are exchanged between nodes and
updated using neural networks[4]. In general, the NMP framework
follows the equation 1:

h(𝑘+1)
𝑢 = UPDATE𝑘

(
h(𝑘)
𝑢 ,AGGREGATE𝑘

({
h(𝑘)
𝑣 ,∀𝑣 ∈ NEIGHBORS (𝑢)

}))
(1)

in which h(𝑘)
𝑢 represents the embedding of a node 𝑢 at iteration

𝑘 , NEIGHBORS is a function over the neighborhood N𝑢 of node 𝑢,
and both UPDATE and AGGREGATE are arbitrary differentiable
functions (i.e., neural networks)[5]. The message passing frame-
work requires graphs to be attributed since, in the first iteration,
the “current” embedding of a node is its input feature vector, i.e.,
h0𝑢 = x𝑢 ,∀𝑢 ∈ V

The Heterogeneous Graph Neural Network adapts the GNN
framework in order to deal with node and edge heterogeneity. The
adaptations mostly encompasses two main concepts: metapaths
and feature transformation. Since metapaths are beyond the scope
of this work, we focus our attention on feature transformation.

In order to aggregate neighborhood information and compose
the “message”, HGNNs must deal with the heterogeneity of the
multitude of node types. In [16], authors state the fusion problem
caused by the heterogeneity of nodes as one of the three challenges
of Heterogeneous Graph Embedding. The reason behind this is
that AGGREGATE is a function over a set of 𝑑-dimensional vectors.
Hence, node features must belong to a common vector space. The
most common technique applied to realize such feature transforma-
tion is projectionmatricesW𝒶 ∈ R |F𝒶 |×𝑑 and can be understood as
a fully connected neural network layer projecting the input vector
of a node 𝑣 ∈ V of type𝒶 ∈ A into a common𝑑-dimensional space.
This approach is observed in several works in literature such as
HAN[17], HetGNN[18], GATNE[1], MAGNN[3] and HetSANN[6].

Regardless of how complex are the features associated with each
type, projection matrices approaches tend to learn at least |A|
matricesW𝒶 ∈ R |F𝒶 |×𝑑 ,∀𝒶 ∈ A.

In our understanding, this type-specific feature transformation
approach discards the semantics of the node feature sets, assuming
that they are disjoint across multiple types of nodes and edges.

3 THE SMOKE SQUADRON DATASET
In this section we present and discuss the Smoke Squadron Dataset,
following three aspects: the game, the provenance graph and the
dataset itself.

3.1 The Game
Smoke Squadron is a local multiplayer flight game where players
fight each other with toy airplanes. Each individual airplane is
equipped with a machine gun for continuous damage actions and
3 different types of projectiles (missiles) which kill at collision:
Simple Missile, Smoke Missile and Fireworks Missile. Aside from
traditional weaponry, planes use a solidifying smoke trail on both
themselves and some missiles which kill at collision. Explicitly,
the Smoke Missile creates a solid smoke trail just like the player’s
airplane, while the Fireworks Missile spawns smoke clouds around
its explosion position. Since the position of these fatal smoke clouds
are mostly defined by the trajectory of players and their projectiles,
each match results in a highly dynamic battle space. Each player
start with 3 lives and each airplane start with a full health and
smoke counter. The health counter is affected by machine gun
shots and wall collisions. The smoke counter is depleted every time
the player shoots a Smoke Missile or a Fireworks Missile and is
recharged by pickup items randomly spawned in the battle space.
The match ends when one of the combatants lose all 3 lives.

3.2 The Provenance Graph
Like most games, Smoke Squadron presents several game objects
with different feature sets and dimensionalities. In Smoke Squadron’s
provenance graphs, we have the following five node types corre-
sponding to the following game objects: Item, Player, Smoke,Missile
(Simple & Smoke) and Fireworks Missile.

For the sake of conciseness, we list below the overall features that
a node from a Smoke Squadron provenance graph might contain:

• Provenance Type feature: Provenance node type, i.e., Agent,
Activity, or Entity.
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Table 2: Smoke Squadron node types and feature information

Node Type Common Features Player Features Health Missile Features Explosion Time

Item X
Player X X X
Smoke X X
Missile X X

Fireworks Missile X X X

• ObjectTag feature: determines the game object responsible
for instantiating that node. The possible values are:
– Player01, Player02: refers to a Player’s Agent and Activity
nodes.

– Smoke: refers to Smoke’s Activity and Entity nodes.
– Rocket: refers to Rocket’s Activity and Entity nodes.
– SmokeItem: refers to SmokeItem’s Entity nodes.
– SmokeItemHalf: refers to SmokeItemHalf’s Entity nodes.
– SmokeSpawner: refers to ItemBox Agent node.

• Label feature: determines a label for the node. The possible
values depend on the Type and ObjectTag values. For exam-
ple, the label value of a node with ObjectTag Missile and
Type Entity is the type of the missile; on the other hand, the
label value of a node with the same ObjectTag but with Type
Activity is the action performed by that missile.

• Health related features: health points and life counter.
• Movement related features: position, direction and rotation
in axis X, Y and Z, and Speed.

• Input related features: Input on angle rotation, acceleration
and braking triggers.

• Physics related features: Throttle, Rotation effect ratios.
• Weapon related features: Weapons and Smoke’s counters,
cooldowns and explosion timers.

However, each type of node draws a different subset of the
above mentioned features. Table 2 presents an overview of Smoke
Squadron’s node feature information. We group all the existing fea-
tures into five feature sets:Common Features, Player Features,Health,
Missile Features, and Explosion Time, where Health and Explosion
Time are single numerical features. Common Features encompasses
general tags that identify the game object related to that node (type,
objectTag, label) and its coordinates in the game world. Player Fea-
tures encompasses input, physics, weapons, and specific movement
related features. Health represents the life points of a game object.
Missile Features encompasses specific missile movement and dam-
age related features. Explosion Time represents the amount of time
it takes for a given game object to explode. As observed in Table 2,
these five feature sets are distributed across node types:

• All node types share Common Features;
• Player and Smoke nodes share the Health feature;
• Missile and Fireworks Missile distinguish themselves due to
the Explosion Time feature.

These feature sets compose nodes’ input vectors x𝑣 . As some
features are categorical, they are encoded in the input vector as one-
hot vectors. Some examples are the Label feature and the Provenance
Type feature. Such features also increase the dimensionality of each
node type’s feature set. Table 3 presents the number of features

Table 3: Smoke Squadron node types statistics

Node Type Item Player Smoke Missile Fireworks

Dim. 29 53 34 33 34
No. of Nodes 704 70617 87483 7823 1621

for each node type. Note that even though Smoke and Fireworks
Missile nodes have input vectors with the same dimensionality,
their feature sets are different.

3.3 The Dataset
The Smoke Squadron dataset comprises the game sessions produced
by four participants, with ages between 20 and 28, with no prior
knowledge of the game. The players were recruited locally to par-
ticipate in the capture process, and the experiment was explained
in detail before the game sessions. All game provenance graphs
are anonymous since they contain no identification attributes and,
therefore, preserve the players’ privacy.

The gameplay capture lasted three hours and generated 37 prove-
nance graphs, totaling 168 thousand nodes and 239 thousand edges.
The average number of nodes per graph is 4,427, and the average
match duration is 185 seconds. Table 3 presents the number of
nodes of each type in the dataset.

4 FEATURE SET ENCODING
In this section we present preliminary results of a feature set based
projection approach. As observed in the previous section, works
in the literature assume that heterogeneous node input vectors are
independently distributed and that the feature sets that compose
such vectors are disjoint. However, grouping node feature sets may
emerge relationships that could be explicitly considered into the
representation learning process. To this end, we propose a solution
for leveraging feature sets into the HGNN architecture: Feature Set
Encoding (FSE).

The objective of FSE is to encode feature set information into the
node input vector xFSE

𝑣 . Therefore, we rearrange node input vec-
tors according to a general graph feature superset and concatenate
a “bag of features” representation of node type’s feature set:

xFSE
𝑣 = W · CONCAT

(
xC𝑣 , b𝒶𝑣

)
(2)

where xC𝑣 is the rearranged input vector of node 𝑣 ∈ V , b𝒶𝑣

is the bag of features representation of node type 𝒶, and W is
a projection matrix that learns a latent representation of node
input vectors that combines both feature values and feature set
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information. To obtain xC𝑣 , we rearrange input vector xC𝑣 according
to C, which is an arbitrary permutation of all the features from
all node types. In case a feature 𝑓 does not exist in that node’s
type, a null value (0) is set. At the end of this process, all input
vectors belong to the same dimensional space defined by C, i.e.,
xC𝑣 ∈ R |C |,∀𝑣 ∈ V .

The “bag of features” b𝒶𝑣
is a binary vector where each position

represents whether a feature is defined for type 𝒶𝑣 (value 1) or
not (value 0). Notice that in xC𝑣 , it is not possible to distinguish an
original null value, i.e., an existing feature whose value is 0, from a
null value for inexistent feature. This limitation, however, is fixed
by the bag of features representation b𝒶𝑣

.
The resulting FSE input vectors xFSE

𝑣 ,∀𝑣 ∈ V preserves origi-
nal feature values, encodes node feature set information and belong
to the same dimensional space R2 |C | . Thereby, a single projec-
tion matrix W ∈ R2 |C |×𝑑 , where 𝑑 is the input dimension of any
GNN method, learns a latent representation of node input vectors
that leverages both feature values and feature set information, as
observed in Equation 2. For clarity’s sake, we call the projection
procedure defined in Equation 2 Feature Set Projection (FSP).

Table 4: Preliminary results on a Link Prediction task

Method Precision Recall

TSP + GNN 0.53 (6e-4) 0.605 (4e-4)
FSP + GNN 0.514 (7.76e-4) 0.626 (6.4e-4)

In a preliminary experiment, we performed a Link Prediction
task comparing type-specific projection (TSP) matrices and the
FSP. In the context of Game Provenance Graphs, the goal of a Link
Prediction task is to infer influence between nodes. Since nodes
represent both objects and events, we exemplify an application
of Link Prediction for this particular dataset: consider that player
B is dodging from player A’s attack. If player B collides with an
obstacle, it is not trivial to analytically determine whether the
collision is a direct consequence of player A’s attack due to all
the interacting elements’ complexity. However, a game analyst
could benefit from assessing how often that influence occurs during
gameplay sessions for game balancing. Thus, we firmly believe that
a graph representation learning approach is best suitable for such
a task.

The results of our preliminary experiment are shown in Table 4.
The GNN used was an unsupervised GraphSAGE implementation
in Pytorch-Geometric which learns node embeddings. To perform
link prediction, we concatenate node embeddings and pass them
through a fully connected layer. Results shown that TSP and FSP
achieve similar results. However, while TSP learns 5 different pro-
jection matrices for each node type, FSP learns a single projection
matrix for all node types.

5 CONCLUSION
In this work we presented the heterogeneous graph dataset Smoke
Squadron, containing a node heterogeneity challenge: how to lever-
age feature set information in heterogeneous graph neural net-
works. Using game provenance graphs of a multiplayer game, we

present graphs in which distinct node types share features subsets
among themselves. As HGNNs are prone to be employed in com-
plex and highly heterogeneous domains, such as observed with
Game Analytics, we believe that intersection among feature sets
might occur more frequently in newer datasets. However, to the
best of our knowledge, works in the graph representation literature
have always assumed node types and feature sets to be disjoint,
hence using type-specific projection matrices. This approach learns
each projection matrix independently and disregards relationships
among feature sets. We also present preliminary results of a feature
set based projection approach which is less costly than type-specific
projection approaches and achieves competitive results.
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