
TRIGGER: TempoRal Interaction Graph GenEratoR
M. Yusuf Özkaya
myozka@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia

Ali Pinar
apinar@sandia.gov

Sandia National Laboratories
Livermore, California

Ümit V. Çatalyürek
umit@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia

ABSTRACT
Efforts on temporal graph generation have focused on generating
instances from the same steady state (e.g., keeping a fixed-size win-
dow over a sequence of edges generated from the same model).
Unfortunately, such generators cannot capture the underlying in-
formation richness of the temporal aspects of activity graphs. Based
on the underlying phenomena being represented by the graph, tem-
poral properties of interest will vary. In addition to topological
features, such as neighbor information, we are interested in fre-
quencies of communication. Subsequently, our work can be split
into two natural steps: building models that can represent the tem-
poral characteristics of nodes of a graph and generating temporal
activity graphs that display the features of our model.

We present TRIGGER (TempoRal Interaction Graph GenEratoR):
A Markov Model-based activity generation approach that classifies
the nodes into profiles and generates a series of repeating interac-
tions in continuous time. Then, we show how to estimate an input
model to represent a real world graph. We carried out extensive
experiments to validate our approach using various real-world tem-
poral datasets and metrics on the quality of generated graphs. We
show that our approach can generate realistic temporal activity
graphs and match temporal metrics such as burstiness, spread, and
persistence and static metrics at both graph and the node scale.

KEYWORDS
graph generation, interaction network, activity network, activity
graphs, temporal graphs, time-varying graphs, continuous time,
network traffic, scalable graph algorithms, datasets
ACM Reference Format:
M. Yusuf Özkaya, Ali Pinar, and Ümit V. Çatalyürek. 2018. TRIGGER: Tem-
poRal Interaction Graph GenEratoR. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION
Graph generation is one of the most important and increasingly
popular research areas. The proprietarity and lack of availability
of many datasets directed many efforts towards generation of real-
istic graph data. Benchmarking for scalable computation requires
extremely large datasets; so large that regeneration of a graph is
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

more efficient than storing and transferring. Even when a graph is
available, researchers are interested in generating similar graphs
to avoid over-tuning their algorithms for an instance and to ob-
serve how their techniques can perform for changing properties
of the graphs (e.g., denser, more vertices, heavier tails in degree
distributions). As such, many researchers have since focused their
efforts to designing realistic graph generators [8, 10, 13, 14, 26].
Many also focus on scaling up such generators as well as designing
novel scalable alternatives [15, 17, 23, 24, 27].

Until recently, only a few explored the features and qualities
a realistic temporal graph generator should have. Many research
areas such as epidemiology, sociology, and social network analysis
have extensive use for temporal network representations [9, 19,
21, 22, 28, 30]. Temporal graph generation itself has a diverse set
of problem definitions. We present our categorization for tempo-
ral graph generation. First, we divide the problems by what the
temporal aspect represents: (i) changes in the graph structure (evolv-
ing/dynamic graphs) and (ii) interactions on a graph structure. Then,
we further divide each category as: changes (interactions) repre-
sented as time window snapshots, as a series of interactions, and
finally, continuous-time (interaction) graph generation where there
are changes (interactions) with meaningful timestamps, where the
point of interest is those timestamps when the events occur.

[9] reviews aspects of temporal networks including generation
approaches. [4] studies random shuffling methods and [16, 29] pro-
pose latent (deep-learning based) information models. [3] present
a generation algorithm built on power-law based inter-event times.
As such, although there are many temporal graph generators, many
models do not generate continuous-time interaction networks. The
ones that do generate usually assume a single distribution to model
the interaction intervals. The goal of this work is to create a scal-
able realistic temporal interaction graph generator that uses input
data parsimoniously. So, the desiderata of our problem: (1) The
algorithm should require minimal input. (2) The generation should
be fast and scalable. (3) The generated graphs should be realistic.
These three points are usually the corners of a tradeoff triangle: It
is easier to create more realistic graphs with more useful input, it
is harder to create a realistic graph fast and scalably, etc.

Depending on the phenomena represented by the graph, tem-
poral features of interest vary widely. Therefore, it is imperative
to be specific about the temporal features of interest. We focus on
burstiness of nodes. Our intuition is that nodes of a network have
different interaction burstiness characteristics at different points in
time. We also consider persistence metric defined by Belth et al.[2]
to explore the qualities of the temporal graphs. To the best of our
knowledge, there is no scalable continuous-time temporal graph
generator available with the focus on interaction times.

Our contributions in this work are: (1) a novel model building
phase that parsimoniously represents the temporal characteristics

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Conference’17, July 2017, Washington, DC, USA M. Yusuf Özkaya, Ali Pinar, and Ümit V. Çatalyürek

of a graph. (2) a novel continuous-time temporal interaction graph
generator that uses the model. (3) an extensive empirical analysis
of the quality of our algorithm in terms of generating a realistic
graph using various real-world datasets and metrics.

2 PROBLEM DEFINITION
We believe, the activities of a node has an inherent structure that
defines the relationship between interactions. For example, a person
can be receiving a phone call, and that might trigger multiple follow-
up calls right after. This could look like a burst of interactions with
long dead times (time intervals of no activity) in between. A web
server might be running a scheduled program with uniform dead
times. Hence, many applications have inherent context-dependent
inter-interaction dead time models. Following these examples, we
believe many applications can be represented with a well-defined
Markov model summarizing the correlation between dead times.

Definition 2.1 (Graph Generation). Given a number T of node
types, number |V | of total node count, Markov models with η states
forT types, a time window size t , and a black-box static graph struc-
ture generator; generate a temporal graph consisting of interactions:
3-tuples of (source, destination, timestamp - ts). The generated
stream of interactions should match node-scale and graph-scale
temporal metrics such as burstiness, frequency, spread and persis-
tence (see § 5.1).

3 THE TRIGGER MODEL
Let t be a 3-tuple of (source,destination, timestamp) of a single
interaction. TRIGGER generates a collective list of interactions
D = (t1, t2, . . .) for a given time limit.

For a single node, our algorithm consists of decoupled procedures
of interaction destination generation and interaction timestamp
generation. Capturing the inter-relation between time aspect and
the destination is a significant context-dependent problem. In this
work, the destinations are randomly selected from a set of possible
neighbors provided by a black-box static graph generator. A sim-
ple extension with minimal effect on input data size would be to
introduce a global tendency parameter for recurring interactions.

Our input model for graph generation consists of the following:
• a static graph model (degree-corrected stochastic block model),
• For each node v ∈ V :
– number of interactions (Cv),
– interaction profile (typev),
– start timestamp,

• Number of types (profiles) T
• For each type i a Markov data structure consisting of:
– a Markov Matrix (MMi) of size η × η,
– an array of Gaussian distribution mean (ctri) and standard
deviations (stdi) of size η,

– an overall state presence probability Ii (aka weights of individ-
ual Gaussian distributions over the dead times) of size η.

Most decisions are made towards requiring smaller input while
maintaining important aspects of a random graph. We selected
Markov modulated Gaussian process (MMGP) above others since
central limit theorem is applicable as we combine independent
nodes/dead time instances (as opposed to, e.g., BuSca [1]). MMGP

is a model where each Markov state represents a separate Gaussian
distribution. The inter-event (dead) times, dt , are sampled from
the Gaussian process defined for the Markov state at hand. By
using Gaussian processes and clustering the nodes into types, we
only require Markov model information for T types instead of |V |

nodes. The memory footprint of the input for temporal aspect is
O(|V | + η2 ×T). Taking the constants into account, 3 integers for
each node, and η × (η + 3) doubles for each type.

In our work, we have implemented a Degree-Corrected Stochas-
tic Block Model (DCSBM) based approach to generate a static graph.
Then, during the temporal edge generation, the destinations for
the interactions are selected from the neighbor set of the source
node in this static graph. Static structure generation is an important
aspect that may require extensive efforts and application-specific
information. We treat DCSBM as a black-box generator. A DCSBM
with B blocks uses B × B integer matrix for the block model, de-
gree and group membership integers for each node (3 × |V |). It
is straightforward to replace with any other generic or context-
specific generator. If having an evolving neighborhood is needed,
one can easily use a custom approach such as a link prediction
algorithm that allows it.

Better results relating to the destination node statistics can be
achieved with a predefined graph generator. One way to do this is
to collect all edges in a temporal graph and create a static fold of it,
and then treat this static fold as the basis of destination generation.
For the static metric evaluation, we use this static fold basis.

The temporal aspect, i.e., generation of timestamps for interac-
tions, is defined completely independent of destination selection
procedure. Here,MMi Markov matrix consists of the dead time in-
terval generators as states and the transition probabilities between
the states as values in the matrix. Rarely, Gaussian distribution
can even return negative numbers, we ignore and resample from
the distribution in this case. One variation of our approach uses
log-normal distribution instead of Gaussian, leading to no negative
samples throughout. Each state represents a Gaussian distribution
as below.

X ∼ N(µ = ctrv [s], σ
2 = stdv [s]

2), s ∈ [0,η), s ∈ Z+. (1)

The generation of dead times are independent for each node. For
each node,Cv interactions (Cv destinations andCv − 1 dead times)
are generated. At the beginning, a random state is selected with
respect to their overall presence (probability of being in a state).
Starting from this state, consecutive states are generated according
to the Markov matrix. For each state s , dead times are generated
from the Gaussian distribution defined for that state (eq. 1). Next, all
dead times are converted to timestamps for interactions via prefix
sum: tsi = startv +

∑i−1
k=0 dtk . Then, destinations and timestamps

are paired as the output data.
It is important to provide opportunities of variations in a gener-

ator. We introduced a |noiseFactor | < 15% that changes the total
number of interactions of each node. Similarly, we provide the op-
tion to add a random deviation multiplier which affects the dead
times of nodes.

TheMarkovmodel requires the dead times to be generated one by
one. Thus, the runtime complexity of the interaction generation for
a single node v is a linear function of Cv . Each node’s interactions
are generated independently, hence can be computed in parallel.

TRIGGER: TempoRal Interaction Graph GenEratoR Conference’17, July 2017, Washington, DC, USA

Burstiness is an important concept being used for anomaly detec-
tion. Our intention is to extend our work to allow further changes
in the parameters (type of a node, neighbors of a node, states of a
type, etc.) during generation, and create room for anomaly/change
detection benchmarking.

4 TRIGGER: ESTIMATING PARAMETERS
Here, we explain how to create our input model using a temporal
graph as input. For the static representation, the graph is fed into
a DCSBM model (we use Peixoto’s approach [20]). For each input
instance, all edges are aggregated to a single directed weighted
static graph. This graph is used as the input for DCSBM model.

Building the Markov models include several design choices de-
cided with respect to ease of use, quality, and speed. They can be
generated in many ways. Here we briefly discuss some of these
decisions. We first create Markov Models for every node separately,
and then, cluster them into T types (profiles).

4.1 Deciding the number and values of states
The number of states η for the Markov models represent the differ-
ent interaction frequency/variation states.

The principal way to figure out how many components (states
η) should be in the mixture and assign the parameters of those
component distributions in the research community is through a
Dirichlet Process. Another prominent approach is the use ofMarkov
Chain Monte Carlo approximation. Both are algorithms that may
take considerable amount of time and effort.

We generate the Markov matrices with the following algorithm.
Let Dv be the set of interaction 3-tuples sourced from node v .
Assuming there areCv interactions, the list of dead times of length
Cv − 1 is computed as the distances between adjacent interactions,
i.e.,dti = tsi+1−tsi for i ∈ [0,Cv−1). Then, a user-specified number
of states η is used as the number of components in a Gaussian
Mixture Model (GMM) built with Expectation-Maximization (EM)
algorithm. The states of our Markov model are then assigned as the
components of this GMM model. This model assigns a label l(dti))
for each dead time representing the most likely state (Gaussian
distribution) it is sampled from.

For each node v , we create a Markov matrix (MMv) of size η × η

and fill it. We usemsd to represent the sth row and dth column of
MMv . Now, each row s ofMMv contains the number of times the
node v jumped from state s to any of η states. Next, we normalize
each row by the sum of the row (cs) to convert them to probabilities.

msd =
∑Cv−2
i=0 1(s = l(dti) ∧ d = l(dti+1)), cs =

∑η−1
k=0msk .

4.2 Deciding the number of types
Storing a separate Markov Model for each node is not memory
efficient. We cluster the nodes with respect to their communica-
tion profiles represented by their Markov models. One principal
way of doing this would be to represent the Markov matrices as a
tensor, and apply Tensor Component Analysis (TCA) followed by
a clustering algorithm using the output of TCA. Here, we require
the user to provide a-priori knowledge on how many types are
expected as an input (T) instead. Then, apply weighted K-Means (or
EM with GMM) to assign types to nodes. Clustering algorithm uses
the state center values and probabilities of being in those states as

the feature vector. The weights are assigned with respect to the
number of interactions of nodes. The resulting model for a type i is
the average of models of all nodes v where typev = i .

5 EVALUATION
5.1 Metrics
Many researchers evaluate their temporal generators by converting
them into snapshots and using static graph metrics. For the sake of
completeness, we briefly touch some static graph metrics including
average degree, number of connected components, reciprocity, etc.
Furthermore, we expect a generated temporal graph to match vari-
ous temporal properties such as, burstiness, spread, and persistence
at both node and graph scale. Exploring other temporal metrics
such as variations of latency, reachability, connectedness, temporal
motif counts, etc. are our ongoing future work.

5.1.1 Static Fold Graph Properties. Our first set of metrics are the
static graph properties. We create a static fold of the graph by con-
verting the interactions generated to weighted edges. Then, we
measure: Maximum values for number of vertices, edges, average
degree, edge weight, number of connected components, size of
largest connected component, clique number, shell index, maxi-
mum in-degree, maximum out-degree, (average values for) density,
local transitivity, assortativity, (weighted) diameter, reciprocity and
weighted reciprocity.

5.1.2 Burstiness. Burstiness in a temporal graph is an empirical
quantity that compares the sequence of dead times (dt) with one
that is generated by a Poisson process. For a Poisson process, the
ratio of standard deviation to the mean is 1 by definition. The
burstiness measure compares σ/µ of dt to that of Pois [5].

B =
σdt /µdt − σPois/µPois
σdt /µdt + σPois/µPois

=
σdt /µdt − 1

σdt /µdt + 1
(1)

Burstiness has the range [−1, 1]. When B = 1, the sequence is
maximally bursty. B = 0 means it is a Poisson process, and B = −1
points to a sequence with fixed intervals. Burstiness is undefined
for a node v if Cv < 2 since that means there is no dead time.

We compare the burstiness of each node in the original graphs
with the corresponding node in the generated graphs. We report
mean (ME) and mean squared-errors (MSE). Finally, we compare
the graph-scale burstiness of input and generated graphs.

5.1.3 Frequency, Spread, and Persistence. Frequency is defined as
loд10(#interactions) + 1 [2]. Shannon entropy is a measure for
the average level of new information in a set. Belth et al. [2] de-
fine Spread as the normalized Shannon entropy (normalized by
the log(#interactions)). The spread of a series of dead times dt is
defined as: S(dt) = H (dt)

log(|dt |) + 1 when |dt | > 1. And, S(dt) = 1 for
|dt | ∈ {0, 1}. Width is the time difference between first and last
interactions normalized by the whole time window size. A node
may only have interactions between 3PM and 5PM in a 24 hour
input span. Then,

Width =
(5PM − 3PM) + 1

24hours + 1
=

7201sec

86401sec
≈

1

12
.

Persistence is themultiplication:Widthα×Frequencyβ×Spreadγ .
We selected powers (α = 1; β = 0.2;γ = 5) for all datasets. Since

Conference’17, July 2017, Washington, DC, USA M. Yusuf Özkaya, Ali Pinar, and Ümit V. Çatalyürek

Table 1: Comparison of static graph properties in single in-
put and generated instances.

Graph |V | |E | Avg. Deg # CC |CC | In- Out- Density Transitvty Assort. Recip.
bike 255 4635 18.176 19 231 73 66 0.0716 0.325 0.076 0.4363
gen-bike 255 3439 13.539 28 230 62 44 0.0535 0.261 0.085 0.3246
darpa-ip 25525 68910 2.700 18170 7356 8063 7295 0.00011 5.11E-06 -0.4144 0.2226
gen-darpa 23880 59417 2.490 16567 7321 8062 7260 0.00010 4.97E-06 -0.3843 0.2581
email-eu 986 24929 25.283 184 803 211 333 0.0257 0.267 -0.0137 0.7112
gen-email 968 20514 21.302 179 795 185 291 0.0221 0.254 0.0001 0.6583
mooc 3850 37080 9.631 3829 22 3658 19 0.0025 0.0125 -0.249 0.0031
gen-mooc 3850 28605 7.430 3833 22 3623 17 0.0019 0.0104 -0.235 0.0028
nyc-taxi 258 9339 36.198 31 228 89 231 0.141 0.563 -0.064 0.5585
gen-nyc 255 7971 31.259 36 227 83 225 0.123 0.56 -0.056 0.5576
reddit 9081 18382 2.024 7511 1470 442 329 0.00022 0.0655 -0.0702 0.1098
gen-reddit 8720 17612 2.020 7634 1446 432 323 0.00023 0.0443 -0.0451 0.0743

Spread and Persistence does not have upper bounds, we cannot
convert that to error percentages directly. We show the MSE and
Weighted MSE of these metrics averaged over all applicable nodes
in the graphs. (for nodes v where Cv > 1).

Graph-scale versions of these metrics are computed similar to
the node-scale versions. The difference is that instead of using the
interactions of a single node, all interactions in the network are
considered. This is an important distinction: Having small errors
for individual nodes does not mean the whole graph as one entity
has small errors, distinct nodes with maximal bursts can cause a
monotonous overall rate if their start times are spread uniformly.

Following Belth et al.’s analysis approach, we show Burstiness,
Spread, and Persistence plots against Frequency in Appendix B.

5.2 Datasets
The data sets we have used are summarized in Table A1.

In this work, we selected an arbitrary, intuitive chunk size for our
datasets. By chunks and size, we mean unique individual continuous
segments from the dataset and their time windows we used as a
single input. Selecting a meaningful size is an important research
direction in itself [25]. We treat the chunks from the same source as
distinct inputs. We collect them together for reporting the results,
since ultimately, they are from the same context and may present
similar trends. For all datasets we use T = 16 and η = 8.

5.3 Static Properties
Although it is not the main point of this work, we present a static
property comparison for completeness. The comparison results
of some selected static properties for a subset of input graphs are
summarized in the Table 1. Here in this section, we only show
results for single arbitrary inputs and corresponding outputs.

The table shows that our generator can match the given metrics
closely. The variations, mostly under-generations, are caused by the
random destination sampling with replacement: There is a chance
some edges never occur for a node with a high degree. One can
solve this by enforcing a pre- or post-processing step that enforce
at least one interaction on all possible edges. This divergence from
the number of neighbors reflect on other metrics as well: (inversely
proportionally for) number of connected components, diameter,
and (proportionally for) number of nodes, number of edges, aver-
age degree, connected component sizes, density, transitivity, and
reciprocity. When the graphs do not have such skewed degree dis-
tributions, the fluctuations on those metrics are smaller, such as
reddit and boston-bike datasets.

Table 2: (Weighted) Mean and (Weighted) Mean Squared-
Error Comparison for Temporal Metrics.

Burstiness Burstiness Spread Persistence
Graph MSE WMSE ME WME MSE WMSE MSE WMSE
boston-bike 0.029 0.024 -0.039 -0.055 0.025 0.010 17.48 16.38
collegemsg 0.020 0.018 -0.034 -0.068 0.029 0.021 6.11 16.27
darpa-ip 0.023 0.005 -0.088 -0.030 0.012 0.090 12.25 64.13
digg 0.012 0.022 -0.016 -0.043 0.021 0.032 6.18 11.49
email-eu 0.032 0.031 -0.038 -0.094 0.020 0.016 27.77 34.28
mooc 0.021 0.021 -0.050 -0.059 0.043 0.043 1.68 2.68
nyc-taxi 0.021 0.006 -0.025 -0.015 0.017 0.0003 39.94 16.60
reddit 0.018 0.025 0.002 -0.004 0.013 0.014 17.15 29.32
slashdot 0.008 0.014 -0.015 -0.028 0.013 0.021 4.85 10.57

0 50 100 150 200
Node Index

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Bu
rs

tin
es

s

Generated
Input

Figure 1: Bi values in input and generated graphs for all
nodes in a nyc-taxi instance, in non-decreasing order.

5.4 Comparing Burstiness, Spread, and
Persistence

Figure 1 shows the comparison of Bv ’s for each node of an input
and the corresponding generated graph for nyc-taxi. The values
in Table 2 and the Figure 1 show that our generator closely matches
the burstiness of individual nodes. Table 2 also shows MSE and
Weighted MSE for Burstiness, Spread, and Persistence averaged
over the nodes in each graph instance. Our results show that our
algorithm, on average, can closely match the temporal metrics for
individual nodes of an input graph. The ME analysis on Burstiness
suggests, on average, it tends to decrease the Burstiness by less
than 0.1.

Since the Spread and Persistence are not normalized metrics, we
cannot safely say how much of an error is a significant deviation.
However, for all MSE and WMSE metrics, smaller is better. Table 2
also contains the highest deviations for darpa and email datasets.

Table 3 summarizes the graph-scale values for the same met-
rics. As shown, generated graphs, compared to the original graphs
cannot always match the graph-scale metrics. Especially, darpa
and email graphs have the highest variations between the gen-
erated and original graphs. This difference reflects on the other
metrics as well. Since the burstiness is not well-matched, the dead
time average also deviates, thus, the number of interactions in the
given time limit is smaller. Our results show that our generator
typically decreases the graph-scale burstiness. Other metrics are
usually more closely matched.

TRIGGER: TempoRal Interaction Graph GenEratoR Conference’17, July 2017, Washington, DC, USA

Table 3: Temporal Metrics at Graph scale.

Graph max(# Interactions) max (B) max (S) max (P)
boston-bike 8312 0.699 1.886 30.055
gen-boston 7618 0.428 1.941 36.130
collegemsg 59835 0.739 1.804 26.098
gen-collegemsg 50053 0.431 1.929 36.398
darpa-ip 4554344 0.991 1.552 13.135
gen-darpa 3031864 0.685 1.787 26.412
digg 276831 0.680 1.944 38.956
gen-digg 238432 0.449 1.947 39.128
email-eu 332334 0.991 1.521 10.163
gen-email 278384 0.138 1.958 44.823
mooc 109200 0.878 1.880 32.413
gen-mooc 101095 0.849 1.943 38.211
nyc-taxi 286277 0.410 1.907 35.168
gen-nyc 280324 0.214 1.928 37.156
reddit 24091 0.153 1.936 36.538
gen-reddit 20008 0.191 1.937 36.439
slashdot 26131 0.687 1.840 28.291
gen-slashdot 25264 0.472 1.894 32.621

6 CONCLUSION
We propose a novel temporal interaction graph generator that
specifically focuses on the continuous-time aspect of interactions
generation. We present a number of temporal metrics and evaluate
the quality of our generator at both the node and the graph scale.
We demonstrate the generated replicas of our input datasets closely
resemble the input graphs in terms of various static and temporal
metrics.

It will be a valuable experience to test the effectiveness of this
generator in well-known use case scenarios such as anomaly de-
tection, streaming community detection, or temporal motif/path
count problems as a future work.

REFERENCES
[1] Rodrigo Augusto da Silva Alves, Renato Martins Assuncao, and Pedro Olmo Stan-

cioli Vaz deMelo. 2016. Burstiness scale: A parsimonious model for characterizing
random series of events. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 1405–1414.

[2] Caleb Belth, Xinyi Zheng, and Danai Koutra. 2020. Mining Persistent Activity in
Continually Evolving Networks. arXiv preprint arXiv:2006.15410 (2020).

[3] Ewan RColman andDanica Vukadinović Greetham. 2015. Memory and burstiness
in dynamic networks. Physical Review E 92, 1 (2015), 012817.

[4] Laetitia Gauvin, Mathieu Génois, Márton Karsai, Mikko Kivelä, Taro Takaguchi,
Eugenio Valdano, and Christian L. Vestergaard. 2020. Randomized reference
models for temporal networks. arXiv:physics.soc-ph/1806.04032

[5] K-I Goh and A-L Barabási. 2008. Burstiness and memory in complex systems.
EPL (Europhysics Letters) 81, 4 (2008), 48002.

[6] Vicenç Gómez, Andreas Kaltenbrunner, and Vicente López. 2008. Statistical
analysis of the social network and discussion threads in slashdot. In Proceedings
of the 17th international conference on World Wide Web. 645–654.

[7] Tad Hogg and Kristina Lerman. 2012. Social dynamics of digg. EPJ Data Science
1, 1 (2012), 5.

[8] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. 1983. Sto-
chastic blockmodels: First steps. Social networks 5, 2 (1983), 109–137.

[9] Petter Holme. 2015. Modern temporal network theory: a colloquium. The
European Physical Journal B 88, 9 (2015), 1–30.

[10] Tamara G. Kolda, Ali. Pınar, Todd. Plantenga, and C. Seshadhri. 2014. A Scal-
able Generative Graph Model with Community Structure. SIAM Journal on
Scientific Computing 36, 5 (2014), C424–C452. https://doi.org/10.1137/130914218
arXiv:https://doi.org/10.1137/130914218

[11] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 1269–1278.

[12] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In Proceedings
of the 22nd International Conference on World Wide Web (WWW ’13 Companion).
Association for Computing Machinery, New York, NY, USA, 1343–1350. https:
//doi.org/10.1145/2487788.2488173

[13] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. 2008. Benchmark
graphs for testing community detection algorithms. Physical review E 78, 4 (2008),
046110.

[14] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and
Zoubin Ghahramani. 2010. Kronecker graphs: An approach tomodeling networks.
Journal of Machine Learning Research 11, Feb (2010), 985–1042.

[15] Ulrich Meyer and Manuel Penschuck. 2016. Generating massive scale-free net-
works under resource constraints. In 2016 Proceedings of the Eighteenth Workshop
on Algorithm Engineering and Experiments (ALENEX). SIAM, 39–52.

[16] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.
In Companion Proceedings of the The Web Conference 2018. 969–976.

[17] M. Yusuf Özkaya, M. Fatih Balın, Ali Pınar, and Ümit V. Çatalyürek. 2020. A
scalable graph generation algorithm to sample over a given shell distribution. In
2020 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 227–236. https://doi.org/10.1109/IPDPSW50202.2020.00051

[18] Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. 2009. Patterns and
dynamics of users’ behavior and interaction: Network analysis of an online
community. Journal of the American Society for Information Science and Technology
60, 5 (2009), 911–932.

[19] Leto Peel and Aaron Clauset. 2015. Detecting Change Points in the Large-
Scale Structure of Evolving Networks. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI’15). AAAI Press, 2914–2920.

[20] Tiago P. Peixoto. 2014. Efficient Monte Carlo and greedy heuristic for the in-
ference of stochastic block models. Phys. Rev. E 89 (Jan 2014), 012804. Issue 1.
https://doi.org/10.1103/PhysRevE.89.012804

[21] Tiago P Peixoto and Martin Rosvall. 2017. Modelling sequences and temporal
networks with dynamic community structures. Nature communications 8, 1
(2017), 1–12.

[22] Luis EC Rocha, Fredrik Liljeros, and Petter Holme. 2011. Simulated epidemics
in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput
Biol 7, 3 (2011), e1001109.

[23] Peter Sanders and Christian Schulz. 2016. Scalable generation of scale-free graphs.
Inform. Process. Lett. 116, 7 (2016), 489–491.

[24] G. M. Slota, J. Berry, S. D. Hammond, S. Olivier, C. Phillips, and S. Rajaman-
ickam. 2019. Scalable Generation of Graphs for Benchmarking HPC Community-
Detection Algorithms. In SC. 1–14.

[25] Sucheta Soundarajan, Acar Tamersoy, Elias B Khalil, Tina Eliassi-Rad,
Duen Horng Chau, Brian Gallagher, and Kevin Roundy. 2016. Generating graph
snapshots from streaming edge data. In Proceedings of the 25th International
Conference Companion on World Wide Web. 109–110.

[26] Isabelle Stanton and Ali Pınar. 2012. Constructing and sampling graphs with
a prescribed joint degree distribution. J. Exp. Algorithmics 17 (2012), 3.1–3.25.
https://doi.org/10.1145/2133803.2330086

[27] Christian L. Staudt, Michael Hamann, Alexander Gutfraind, Ilya Safro, and Hen-
ning Meyerhenke. 2017. Generating realistic scaled complex networks. Applied
Network Science 2, 1 (13 Oct 2017), 36. https://doi.org/10.1007/s41109-017-0054-z

[28] Taro Takaguchi, Naoki Masuda, and Petter Holme. 2013. Bursty communication
patterns facilitate spreading in a threshold-based epidemic dynamics. PloS one 8,
7 (2013), e68629.

[29] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
2019. Dyrep: Learning representations over dynamic graphs. In International
Conference on Learning Representations.

[30] James D Wilson, Nathaniel T Stevens, and William H Woodall. 2019. Modeling
and detecting change in temporal networks via the degree corrected stochastic
block model. Quality and Reliability Engineering International 35, 5 (2019), 1363–
1378.

https://arxiv.org/abs/physics.soc-ph/1806.04032
https://doi.org/10.1137/130914218
https://arxiv.org/abs/https://doi.org/10.1137/130914218
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1109/IPDPSW50202.2020.00051
https://doi.org/10.1103/PhysRevE.89.012804
https://doi.org/10.1145/2133803.2330086
https://doi.org/10.1007/s41109-017-0054-z

Conference’17, July 2017, Washington, DC, USA M. Yusuf Özkaya, Ali Pinar, and Ümit V. Çatalyürek

A PROPERTIES OF DATASETS
The nyc-taxi1 data is the NYC Taxi trips of January 2019 and
the boston-bike2 dataset is the entries in the Bluebikes system of
Boston for April 2019. digg is the trace of user/story rating interac-
tions whereas mooc is the interactions between students and a set
of actions they take in a MOOC platform. reddit dataset contains
the timestamped references between subreddits. darpa-ip is an
IP to IP interaction network, where there are normal and mali-
cious traffic present. slashdot dataset consists of replies of users
in Slashdot website. collegemsg is comprised of private messages
sent on a social network at the University of California, Irvine.
Finally, email-eu dataset contains the email transactions between
employees of a European research institution.

The columns of Table A1 show the maximum numbers encoun-
tered among the chunks of a graph. For example, maximum of |V |

means the maximum number of nodes encountered in any of the
chunks. One instance (chunk) from nyc-taxi graph may have 255
unique nodes in it while another has 260. We report 260 in this case.

Our analysis showed the datasets selected are diverse in terms
of interaction frequency and distributions. Some datasets show a
tendency towards power-law distribution of interactions among
nodes. Some of them have very steep drops while some are very
heavy-tailed. In addition, the ratio of #interactions to |unique(E)|
in Table A1 shows the selected datasets cover a wide range of
interaction repetition patterns over the edges.

The minimum, average and maximum burstiness columns of
Table A1 show that many of the graphs usually have a stable graph-
scale burstiness. boston-bike is one exception with a range of
[0.393, 0.699]. This means that even in a graph from the same
context, two different time windows (e.g., two different days) may
have significantly different interaction patterns.

The difference between the columns |V | and |Sources | shows
that in some datasets, some nodes do not initiate any interactions
and the subset of nodes that initiate an interaction can go as low as
one third of the graph.

Another important takeaway from the datasets presented is
that none of the graphs have negative burstiness. Inspecting the
burstiness over a larger set of temporal interaction graphs may be
a novel analysis approach in such datasets.

B COMPARISON OF A SAMPLE INPUT AND
GENERATED GRAPH

We visually compare the log of number of interactions (loд(Cv),
i.e., frequency in [2]) - Burstiness (Bv) relation of all nodes in a
sample original graph and the generated copy. Following Belth et
al.[2]’s analysis of streaming graphs, we present the Frequency vs
Persistence and Frequency vs Spread scatter plots. Figure A1 and A2
show Burstiness (B), Spread (S), and Persistence (P) vs the number
of interactions(C) (defined as Frequency (F) in [2]) for an arbitrary
input instance from nyc-taxi data and one generated graph. The
figures are color- and shape-coded according to the types derived
during theMM clustering step for visual clarity.

Figures show that the clustering step divided nodes into types of
relatively balanced sizes. Our algorithm created a similar temporal
1(https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page)
2(https://data.boston.gov/dataset/blue-bikes-system-data)

graph to the input (with the noise factor of up to 15%). Within
each type and overall, figures present similar trends and locations
within the plots. It also shows that the clustering step does not put
nodes which are vastly different from each other in terms of these
metrics in the same type. Our experiments showed that the biggest
burstiness variations usually happen for the nodes with less than
10 interactions. This is because there is much less data points and
the fact that the law of large numbers do not apply for the random
sampling of such small sizes.

We can also see that Persistence of the nodes increase as the
number of interactions increase. This is expected since Frequency
is a multiplicative factor in the definition of Persistence. And, the
effect of noise factor, is also clearly visible in the Persistence plot
of the generated graph as a wider spread in vertical axis.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://data.boston.gov/dataset/blue-bikes-system-data

TRIGGER: TempoRal Interaction Graph GenEratoR Conference’17, July 2017, Washington, DC, USA

Table A1: Datasets and preliminary details of the instances in the dataset.
Graph |V | |Sources | |unique(E) | #interactions min(B) avд(B) max (B) S P Chunks (Size)
boston-bike 263 263 5358 8312 0.393 0.582 0.699 1.854 27.575 30 (1 day)
collegemsg [18] 1899 1350 20296 59835 0.739 0.739 0.739 1.804 26.098 1 (whole data)
darpa-ip [2] 25525 9484 68910 4554344 0.991 0.991 0.991 1.552 13.135 1 (whole data)
digg [7] 49936 49139 276067 276831 0.111 0.316 0.680 1.944 38.956 2 (60 days)
email-eu [2] 986 824 24929 332334 0.991 0.991 0.991 1.521 10.163 1 (whole data)
mooc [11] 4263 4255 54048 109200 0.664 0.731 0.878 1.880 32.410 4 (1 week)
nyc-taxi 260 245 11114 286277 0.250 0.335 0.410 1.892 33.920 29 (1 day)
reddit [2] 9081 6813 18382 24091 0.128 0.142 0.153 1.936 36.538 3 (30 days)
slashdot [6, 12] 12623 12560 24431 26131 0.606 0.632 0.687 1.840 28.291 3 (60 days)

100 101 102 103 104

Interaction Count

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Bu
rs

tin
es

s

(a) Burstiness

100 101 102 103 104

Interaction Count

1.0

1.2

1.4

1.6

1.8

2.0

Sp
re

ad

(b) Spread

100 101 102 103 104

Interaction Count

0

5

10

15

20

25

30

35

Pe
rs

ist
en

ce

(c) Persistence

Figure A1: The log of number of interactions (C) vs Burstiness (B), Spread (S), and Persistence (P) scatter plots for nodes of
input nyc-taxi graph, color- and shape-coded by the types (16 types).

100 101 102 103 104

Interaction Count

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Bu
rs

tin
es

s

(a) Burstiness

100 101 102 103 104

Interaction Count

1.0

1.2

1.4

1.6

1.8

2.0

Sp
re

ad

(b) Spread

100 101 102 103 104

Interaction Count

0

5

10

15

20

25

30

35

Pe
rs

ist
en

ce

(c) Persistence

Figure A2: The log of number of interactions (C) vs Burstiness (B), Spread (S), and Persistence (P) scatter plots for nodes of
generated replica of nyc-taxi graph, color- and shape-coded by the types (16 types).

	Abstract
	1 Introduction
	2 Problem Definition
	3 The TRIGGER Model
	4 TRIGGER: Estimating parameters
	4.1 Deciding the number and values of states
	4.2 Deciding the number of types

	5 Evaluation
	5.1 Metrics
	5.2 Datasets
	5.3 Static Properties
	5.4 Comparing Burstiness, Spread, and Persistence

	6 Conclusion
	References
	A Properties of datasets
	B Comparison of a sample input and generated graph

