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ABSTRACT

Current advances in unsupervised representation learning (URL)
have primarily been driven by novel contrastive learning and re-
construction based paradigms. Recent work finds the following
properties to be critical for visual URL’s success: invariance to
task-irrelevant attributes, recoverability of labels from augmented
samples, and separablility of classes in some latent space. How-
ever, these properties are hard to measure or sometimes unsup-
ported when using commonly adopted graph augmentations and
benchmarks, making it difficult to evaluate the merits of differ-
ent URL paradigms or augmentation strategies. For example, on
several benchmark datasets, we find that popularly used, generic
graph augmentations (GGA) do not induce task-relevant invariance.
Moreover, GGA’s recoverability cannot be directly evaluated as it is
unclear how graph semantics, potentially altered by augmentation,
are related to the task. Through this work, we introduce a synthetic
data generation process that allows us to control the amount of task-
irrelevant (style) and task-relevant (content) information in graph
datasets. This construction enables us to define oracle augmenta-
tions that induce task-relevant invariances and are recoverable by
design. The class separability, i.e., hardness of a task, can also be
altered by controlling the degree of irrelevant information. Our
proposed process allows us to evaluate how varying levels of style
affects the performance of graph URL algorithms and augmentation
strategies. Overall, this data generation process is valuable to the
community for better understanding limitations of proposed graph
URL paradigms that are otherwise not apparent through standard
benchmark evaluation.

1 INTRODUCTION

For many practical machine learning tasks, labeled data is expensive
[66], difficult to obtain [48, 49], and potentially biased [5, 34]. In
such scenarios, unsupervised representation learning (URL) offers
an alternative paradigm that not only enables the use of larger,
unlabeled datasets [55] but has also been shown to produce more
robust [20, 30], transferable [12, 22] and semantically consistent 7]
representations. Recent success of visual URL has primarily been
driven by novel contrastive learning (CL) [6-8, 10, 19, 21, 40, 44, 62]
as well as improved reconstruction-based algorithms [13, 18]; many
of which have direct, graph analogues [17, 37, 39, 59, 64].

The empirical success of visual CL has lead to a surge of efforts
seeking to gain insights into its behavior [1, 14, 16, 32, 41, 47, 51, 65].
Underlying many of these analyses is the assumption that there
exists a latent space that satisfies the following properties [2, 52]: (i)
labels of augmented samples are generally recoverable from the nat-
ural sample from which they were generated; and (ii) samples (and
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corresponding augmentations) from different underlying classes
are separable in this latent space. Moreover, works studying view
generation for CL have found that augmentations should generate
views that only share the minimum information relevant for down-
stream tasks [41] and introduce useful, task-dependent invariances
[32, 43]. Due to the continuous representation of natural images and
well-designed augmentation strategies, Wei et al. empirically show
these assumptions are indeed satisfied by vision URL methods [52].

While CL has become increasingly popular for graph URL, it
remains unclear if the above properties are supported for non-
Euclidean, discrete data, and how violating these assumptions may
impact the behavior of graph URL. Indeed, graph data augmenta-
tion design [28, 38, 58] remains an open research area because it is
difficult to determine prima facie what changes to a graph’s topol-
ogy or node features will preserve semantics and what invariances
might be relevant to the downstream task. While it is possible that
recoverability can be inherently more difficult to satisfy on graph
datasets, the separability assumption could also be violated as in-
termediate points in such a latent space are meaningless in the
discrete, structured input space. Therefore, in this paper, we take a
data-centric perspective that seeks to understand these properties
in the context of graph URL.

Proposed Work. We first show that commonly used generic graph
augmentations (GGA) and benchmarks are insufficient for under-
standing how the above properties affect the performance of graph
URL methods and augmentation strategies. Therefore, we introduce
a synthetic data generation process that allows for control over
the amount of task-irrelevant (style) and task-relevant (content)
information in each sample. By controlling the amount of style
and content, we are able to vary class separability as well as define
augmentations which induce task-relevant invariances and are re-
coverable by design. Using the proposed process, we evaluate how
different graph URL paradigms perform when varying class sepa-
rability and augmentations’ recoverability. Notably, we properly
demonstrate that training with task-relevant augmentations is nec-
essary for models to perform well across different style vs. content
ratios at test time. Overall, the proposed data generation process
helps contextualize properties fundamental to the success of visual
URL with respect to graph URL paradigms and data augmentation.
Our contributions are summarized as follows:

o Limitations of existing datasets. On standard benchmarks, we
show that despite improved invariance, models trained with GGA
have marginal improvements in accuracy compared to untrained
encoders. This indicates GGA barely encode task-semantics.

o Synthetic Data Generation Process. We propose a synthetic
data generation process that allows for control over the amount of
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the task irrelevant vs. relevant information in each sample. Using
the proposed process, we evaluate graph URL paradigms under
varying class separability and augmentation recoverability.

2 BACKGROUND

In this section, we briefly introduce contrastive learning frame-
works and properties of useful data augmentation.

Recent advancements in URL have been driven by the CL para-
digm, where representations are learned by enforcing representa-
tional similarity between positive views of a sample (i.e., augmen-
tations) and dissimilarity between negative views (i.e., different
samples). Existing CL frameworks can be broadly categorized based
on the mechanism adopted for enforcing this consistency: discrim-
inative frameworks [8, 38, 40, 44, 58, 59] use the InfoNCE loss;
approaches that rely only on positive pairs either use Siamese ar-
chitectures [10, 14, 39] with stop gradient or asymmetric branches,
or enforce cluster-level consistency [6, 7] to eliminate the need for
negative samples; approaches such as [3, 62] propose to directly
reduce redundancy between views. Despite these differences, all
methods rely upon aggressive, task-relevant data augmentation
strategies to generate views.

Critically, these views are assumed to approximately preserve
task-relevant information [43] or equivalently, that labels of views
should be recoverable from the underlying sample [16]. Tian et al.
further argued that views should only share the minimum amount
of task-relevant information to perform well on a downstream task,
while also achieving invariance to nuisance or irrelevant infor-
mation. Empirically, Purushwalkam and Gupta also find that data
augmentations should induce view invariances that are well-aligned
with characteristics of the downstream task. In this work, we focus
on commonly used generic graph augmentations (GGA) [59]. GGA
are simple feature and topological perturbations, e.g., node drop-
ping, subgraph sampling, edge perturbation and feature masking,
that are limited to altering only a fraction of the original sam-
ple. While it is difficult to verify the recoverability assumption on
benchmark datasets, in Sec. 4.2, we use the proposed data genera-
tion process to better understand how augmentation recoverability
affects graph URL performance.

3 WHAT BENCHMARKS CANNOT TELL US

An assumption underlying many graph data augmentation tech-
niques is that topological or feature perturbations constrained to a
small fraction of the original graph do not alter task-semantics, and
hence learning invariance to such perturbations is beneficial to the
downstream task. On real-world benchmark datasets, we cannot
directly evaluate whether such augmentations are recoverable as
there is no mechanism to determine the correctness. Therefore, we
instead ask if such augmentations induce invariance that is useful
to downstream tasks by conducting the following experiment.

Experiment Set-up: We use the following representative graph URL
algorithms: (i) GraphCL [59], a popular and effective graph CL
method; (ii) GAE, Graph Autoencoder [26] that uses a reconstruc-
tion cost to learn representations; (iii) Augmentation-Augmented
Autoencoder [13], which we adapt to graphs to create the Aug-
mentation Augmented Graph Autoencoder (AAGAE) that mini-
mizes the reconstruction error between the reconstruction for an
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Figure 1: Invariance vs. KNN Acc. The change in invariance
(Inv.) and accuracy w.r.t. to an untrained encoder is plotted,
where Inv. is measured according to [51]. Noticeably, Inv. has
not significantly increased for many datasets/methods, im-
proved Inv. does not necessarily entail better performance
(see Reddit), and AAGAE/GAE often sees decreased Inv.,
which we suspect is due to using a decoder.

augmented sample and the original,; (iv) SpecCL, which uses the
SpecLoss [16] for contrastive training; (v) Untrained representa-
tions, which have been observed to be surprisingly competitive
baselines [27, 38, 42, 54]. To the best of our knowledge, ours is the
first work to evaluate AAGAE and SpecCL for graph URL. We use
the same augmentations and encoder architecture as GraphCL. We
add a straight-through estimator [23] to GAE/AAGAE’s decoder
for better training. For more experimental details, including the
performance of all methods, please see appendix A.

Training, invariance, and what standard benchmarks can-
not tell us. Wang and Isola recently demonstrated that training
with InfoNCE is equivalent to optimizing two different properties:
alignment, or the similarity of positive samples, and uniformity, or
how well representations are distributed on a hypersphere. Ver-
sions of these properties commonly occur in generalization bounds
for URL techniques [16, 52]. Intuitively, enforcing positive views
to have similar representations, models are expected to become in-
variant to the given augmentation. To determine if GGA introduces
task-relevant invariance (inv.) on benchmark datasets, we compute
alignment, defined as the average distance between normalized
positive pairs, and kNN accuracy for trained and untrained models.
In Fig. 1, we plot the difference in inv. and accuracy, averaged over
10 seeds. We see that many models do not have noticeably better
inv. or accuracy with respect to the untrained baseline. Notably,
on the Reddit dataset, all methods have improved inv. but do not
have significantly better kNN accuracy. In contrast, AAGAE and
GAE have less inv. than untrained models but improved accuracy;
we suspect that the decreased inv. is due to the use of a decoder.
Overall, this experiment demonstrates that learning invariance to
GGAs is both difficult and often unrelated to task performance.
Moreover, given that GGAs have unknown recoverability on stan-
dard datasets, and that URL was not able to sufficiently out perform
untrained baselines, there is need for new datasets and augmenta-
tions where we can better understand the merits of different graph
URL paradigms.
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Figure 2: Synthetic Dataset Generation. A class-specific motif (shown in red) completely determines the label, and is therefore
considered “content". To vary the amount of style, the size of the background tree graph (shown in blue) is a ratio of the number
of “content” nodes. Our dataset goes beyond binary, benchmark datasets and allows for content-aware augmentations, a critical
component to understanding unsupervised graph representation learning.

4 WHAT SYNTHETIC DATA CAN TELL US

In this section, we first introduce the proposed synthetic data gen-
eration process. We then use the proposed process to show how
invariance and class separability must be jointly considered when
designing augmentations.

4.1 Synthetic Data Generation Process

Given that standard benchmark datasets and augmentation prac-
tices are uninformative when evaluating the recoverability and
invariance of augmentations, we propose a synthetic data genera-
tion process that allows us to understand how the data-dependent
assumptions of URL hold for graph datasets. This process not only
enables oracle augmentations where recoverability is known, but
also allows us some control over dataset separability.

The design of our data generation process is motivated by a
recent theoretical work that seeks to understand how CL, data
augmentation, and data generation processes are related. Using a
latent variable model, von Kiigelgen et al. show that self-supervised
training with data augmentation is able to recover a style vs. content
partition in the latent representation space. Here, style represents
information that is irrelevant to the downstream task and can be
perturbed (i.e., augmented) without changing sample semantics,
while content represents task-relevant information and should be
preserved. The proposed data generation process creates graph
samples that can be decomposed into style vs. content and allows
for control over this trade-off (see Figure 2). In doing so, oracle,
content-aware augmentations (CAA), with high recoverability, can
be evaluated at varying levels of separability, approximated through
different style levels.

Generation Process: The proposed data generation process has
three components: a set of C motifs, M, that uniquely determine C
classes; a random graph generator, RBG(n), parameterized by the
number of nodes (we can equivalently define this based on number
of edges); and «, the style multiplier, which controls how much
irrelevant information a sample contains. To generate a sample,
we attach a randomly generated background graph (i.e., style com-
ponent) to a motif (i.e., content) according to the style multiplier.
This simple process addresses several limitations often encountered
in GCL evaluation. Specifically, it (i) allows for varying levels of
content-aware augmentation (i.e., edges that can be perturbed in
the background graph without harming the motif); (ii) is easily
extended beyond binary classification; (iii) contains relatively large

number of samples; and (iv) offers a natural test bed for GNN size
generalization or transfer learning [57].

4.2 Balancing Style vs. Content

Several real graph datasets can be understood through a style vs.
content perspective. For example, in drug discovery tasks [66],
molecules can be split into functional groups (content) and carbon
rings or scaffold structure (style). One may thus ask: how does
varying levels of style vs. content affect the performance of graph
URL algorithms, and how do different algorithms benefit from the
use of content-aware augmentations? To answer these questions,
we conduct the following experiment:

Experiment Details: Let C = 6, k = 4 and define RBG(n)
through a random tree generator, where n is number of the nodes
belonging the motif, scaled by x. Node features are a constant 10-
dimensional vector. To increase task difficulty, we randomly insert
between 1-3 motif copies into each sample. Using the specified
instaniation of the generation process, we train GraphCL, AAGAE,
GAE, and SpecLoss with content-preserving edge dropping and
random edge dropping at 20% and 60% augmentation strength.
We also evaluate two recently proposed automated augmentation
methods, JOAO [58] and AD-GCL[38]. JOAO is trained with a GGA
prior and an expanded GGA prior that includes content-preserving
edge dropping. AD-GCL is trained using a learnable edge-dropping
augmentor. A 5-layer GIN encoder is used and models are trained
for 60 epochs using Adam (Ir=0.01). After training, all models are
evaluated using the linear probe protocol [8] at varying style ratios.
Given that style information is not relevant to the downstream
task, we expect models that have truly learned invariance to this
information will retain strong performance across different ratios.
See appendix A for more model details.

Results. From our results in Figure 3, we make the following ob-
servations. First, for reconstruction tasks, as the amount of style in-
creases, the problem inherently becomes harder, as the model must
learn to reconstruct increasing amounts of irrelevant information.
Indeed, we see that the performance of all reconstruction-based
methods decreases as style increases. While content aware aug-
mentations do improve the performance of AAGAE over baseline
augmentations, it is unable to match that of contrastive methods.
However, with mild random augmentations, AAGAE performs com-
parably to GAE, and with aggressive random augmentation it per-
forms worse. Second, our analysis suggests that other framework
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Figure 3: Style Invariance Across Paradigms: We evaluate the performance of contrastive and reconstruction approaches with
CAAs and GGAs with varying style vs. content ratios. As expected, reconstruction methods perform best in low style regimes,
and CAAs improve graph CL performance. Notably, AD-GCL and JOAO do not learn augmentations that induce style-invariance.
JOAO is unable to find such a solution even when the prior augmentation set is expanded to include CAAs.

components, such as more expressive architectures [9, 11, 15, 45, 53]
and sampling strategies [10, 14, 24], must also be developed before
reconstruction-based methods are able to see similar success to
visual URL and GCL. Furthermore, we note that the gain from
CAA in high-style regimes is much less pronounced for reconstruc-
tion approaches than for GCL. This may partially be attributed to
increased difficulty in reconstructing larger graphs. More sophis-
ticated decoders and algorithms may help improve performance.
Notably, in ??, we see that automated methods are unable to learn
augmentation strategies that induce style invariance. Indeed, JOAO
is unable to find such a solution even when the augmentation prior
includes CAAs. We suspect this is due to their use of bi-level opti-
mization objectives, which are known to be difficult to optimize
and prone to finding locally optimal solutions. Overall, this experi-
ment demonstrates that automated methods can be brittle and the
proposed benchmark is valuable in evaluation such methods.

4.3 Invariance vs. Separability

We now use our synthetic benchmark to investigate how invariance
balances off with the critical assumption of class separability in the
latent space. Invariance, while desirable as discussed previously, if
considered in isolation could be trivially satisfied by representation
collapse, where all graphs are mapped to highly similar representa-
tions and are not meaningful for distinguishing classes.

Experimental Setup: Using a synthetic dataset at k = 6, we
train GraphCL with content-preserving edge dropping and random
edge dropping at 20% augmentation strength. We compute an in-
variance score for each natural sample by computing the average
cosine similarity of its representation with that 30 different aug-
mented versions. We compute a separability score by dividing the
maximum cosine similarity to a sample of the same class by the
maximum cosine similarity to a sample of another class.

Generic graph augmentations trade off separability for
invariance by collapsing representations. Figure 4 shows ker-
nel density estimates of the number of samples that have a given
invariance versus separability, using both random and content-
preserving augmentations. Representations from the model trained
using GGA have somewhat higher invariance but much lower sep-
arability scores. This is likely evidence of model collapse; indeed,
with a higher augmentation strength of 60%, we found that using
GGA produced invariance and separability scores very close to 1 for
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Figure 4: Inv. vs. Separability. With k = 6 and 20% augmen-

tation strength, GraphCL trained with GGAs produces rep-

resentations with high inv. but low separability, indicating

model collapse. In contrast, using CAAs lead to almost as

high inv. but much greater separability.

0.4

all samples, indicating that all samples had similar representations
(i.e. strong model collapse). Content-preserving augmentations help
GraphCL achieve over an order of magnitude higher separability
while still preserving comparably high invariance. We observed
similar trends for SpecLoss.

5 CONCLUSION

In this work, we study the interplay between data-dependent prop-
erties, such as recoverability of augmentations and class separability,
and the efficacy of graph URL approaches. We first demonstrate
that popular, generic graph augmentations do not induce invari-
ance that is useful to downstream tasks. To better understand the
benefits of recoverable, i.e. content-aware augmentations, we in-
troduce a systematic synthetic data generation process based on
a style-vs-content decomposition. Our work offers an empirical
framework to develop graph URL algorithms that are better aligned
with data-dependent properties. While simple, the proposed gen-
eration process can be extended in several interesting ways. For
example, the irrelevant information can be defined using different
types of background graph instead of by the ratio. Explainability
methods can be used to verify that methods are learning to attend
to known, content information, and spectral graph theory can be
used to define style vs. content rigorously.
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Content Motifs

Class: A Class: B Class: C Class: D Class: E Class: F
Figure 5: Motifs used to determine class labels.

We use the motifs shown in Fig. A to define a 6 class graph classification task. It is important to ensure that the motifs are not isomorphic,
as many GNNs are less expressive than the 1-Weisfeiler Lehman’s test for isomorphism ([53]). For each class, 1000 random samples are
generated as follows: (i) We randomly select between 1-3 motifs to be in each sample. At this time, motifs all belong to the same class, though
this condition could easily be changed for a more difficult task. (i) We define the number of content nodes, Cp, as the size of the selected
motif, scaled by the number of motifs in the sample. (iii) For a given style ratio, we determine the number of possible style nodes as S, = pCp,
(iv). We define RBG(n) using networkx’s ! random tree generator: networkx.generators. trees.random_tree. We note that other random
graph generators would also be well suited for this task. (v) For additional randomness, we create background graphs using S, + 2, and also
randomly perturb up-to 10% of edges in sample. We repeat this set-up with p € {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.5, 8.0}
to generate the datasets used in Sec ??.

Experimental Set-up: We follow You et al. for TUDataset experiments. For synthetic datasets we use the following setup. Our encoder is a
5-layer GIN model with mean pooling. We set input node features to be a constant 10-dimensional feature vector, and a hidden layer dimension
is 32; we concatenate hidden representations for a representation dimension of 160. Models are pretrained for 60 epochs. Subsequently, we
use a linear evaluation protocol and train a linear head for 200 epochs. All models are trained with Adam, Ir = 0.01. We use the provided
code when training models with JOAO[58] and AD-GCL[38]. We perform an informal grid-search over y € {0.01,0.1, 1.0} for JOAO and use
y=0.1.

Table 1: Benchmarking Graph URL Inductive Bias on Benchmark Datasets. We report the performance of [59], GAE [26],
AAGAE and SpecLoss against untrained N-layer GIN encoders. Results for GraphCL are taken from the paper, while untrained
model results are from [42]. We use the same evaluation protocol and encoder architecture as [59] for trained models. Best
results are indicated in bold; results within standard deviation are underlined.

Dataset Untrained (3) Untrained(4) Untrained (5) GraphCL GAE AAGAE SpecCL

MUTAG (188) 85.76 + 7.38 86.36 + 6.51 86.73 +10.33  86.80+1.34 87.76 +3.00 88.23+0.98 86.17 +4.11
PROTEINS (1113)  73.64 + 5.464 74.46 + 4.09 74.22 + 2.85 7439+ 045 7536+04 74.77+0.43 74.00 +1.58

NCI1 (4110) 70.65 = 1.99 70.36 £ 3.11 70.49 + 2.42 77.81£0.41 7948 +0.44 79.75%1.25 76.66+0.029
DD (1187) 73.23 £8.25 72.15+7.25 77.08 + 4.18 78.62+0.40 78.24+0.67 77.59+0.64 7843 +1.18
RDT-B (2000) 72.34 £ 6.64 64.57 + 8.03 67.32 +£7.41 89.53+0.84 79.75+1.25 79.95+439 79.28 +£1.049

IMDB-B (1000) 67.22 £7.77 61.26 £7.01 60.43 £ 5.92 71.14+£0.44 71.70+0.36 71.26 + 0.305 71.4 +2.19

B RELATED WORK

Graph Data Augmentation: Unlike images, graphs are discrete objects that do not naturally lie in Euclidiean space, making it difficult to
define meaningful augmentations. Furthermore, while for images or natural language, there may be an intuitive understanding of what
changes will preserve task-relevant information, this is not the case for graphs. Indeed, a single edge change can completely change the
properties of a molecular graph. Therefore, only a few works consider graph data augmentation. [63] note that a node classification task can
be perfectly solved if edges only exist between same class samples. They increase homophily by adding edges between nodes that a neural
network predicts belong to the same class and breaking edges between nodes of predicted dissimilar classes. However, this approach is
expensive and not applicable to graph classification. [28] argue that information preserving topological transformations are difficult for
the aforementioned reasons and instead focus on feature augmentations. Throughout training, they add an adversarial perturbation to
node features to improve generalization, computing the gradient of the model weights while computing the gradients of the adversarial

!https://networkx.org/documentation/stable/
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Table 2: Dataset Description

Name Graphs Classes Avg. Nodes Avg. Edges Domain
IMDB-BINARY [56] 1000 2 19.77 96.53  Social
REDDIT-BINARY [56] 2000 2 429.63 497.75  Social
MUTAG [29] 188 2 17.93 19.79 Molecule
PROTEINS [4] 1113 2 39.06 72.82  Bioinf.
DD [36] 1178 2 284.32 715.66  Bioinf.
NCI1 [50] 4110 2 29.87 32.30 Molecule

Table 3: Selected Graph Contrastive Learning Frameworks. We provide a brief description of augmentations used by selected
frameworks. Most frameworks use random corruptive, sampling, or diffusion-based approaches to generate augmentations.

Method Augmentations

GraphCL ([59]) Node Dropping, Edge Adding/Dropping, Attribute Masking,
Subgraph Extraction

GCC ([33]) RWR Subgraph Extraction of Ego Network

MVGRL ([17])  PPR Diffusion + Sampling

GCA ([64]) Edge Dropping, Attribute Masking (both weighted by central-
ity)

BGRL ([39]) Edge Dropping, Attribute Masking
SelfGNN ([25])  Attribute Splitting, Attribute Standardization + Scaling, Local
Degree Profile, Paste + Local Degree Profile

perturbation to avoid more expensive adversarial training [35]. This approach is not directly applicable to contrastive learning, where label
information cannot be used to generate the adversarial perturbation.

Graph Self-Supervised Learning: In graphs, recent works have explored several paradigms for self-supervised learning: see [31] for an
up-to-date survey. Graph pre-text tasks are often reminiscent of image in-painting tasks [61], and seek to complete masked graphs and/or
node features ([22, 60]). Other successful approaches include predicting auxiliary properties of nodes or entire graphs during pre-training or
part of regular training to prevent overfitting ([22]). These tasks often must be carefully selected to avoid negative transfer between tasks.
Many contrast-based unsupervised approaches have also been proposed, often inspired by techniques designed for non-graph data. [37, 46]
draw inspiration from [21] and maximize the mutual information between global and local representations. MVGRL ([17]) contrasts different
views at multiple granularities similar to [44]. [25, 33, 39, 59, 64] use augmentations (which we summarize in Table B) to generate views for
contrastive learning. We note that random corruption, sampling or diffusion based approaches used to create generic graph augmentations
often do not preserve task-relevant information or introduce meaningful invariances.
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