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ABSTRACT
The link prediction task on knowledge graphs without explicit
negative triples in the training data motivates the usage of rank-
based metrics. Here, we review existing rank-based metrics and
propose desiderata for improved metrics that address the lack of
interpretability and comparability of existing metrics to datasets
of different sizes and properties. We introduce a simple theoretical
framework for rank-based metrics through which we investigate
two avenues for improvements to existing metrics via alternative
aggregation functions and concepts from probability theory. We
finally propose several new rank-based metrics that are more easily
interpreted and compared accompanied by a demonstration of their
usage in a benchmarking of knowledge graph embedding models.
In this case study, the newmetrics reveal that on small graphs, most
models’ results are not significantly different from random, despite
appearing convincing when measured with existing metrics.
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• Computing methodologies→ Ranking.
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1 INTRODUCTION
Knowledge graphs (KGs) are a structured formalism for represent-
ing facts about entities E and their relationships R as triples of
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the form (ℎ, 𝑟, 𝑡) ∈ E × R × E. KGs are useful for entity cluster-
ing, link prediction, entity disambiguation, question answering,
dialogue systems, and recommendation systems [33]. They can be
constructed under one of two assumptions: under the closed-world
assumption (CWA), the non-existence of a triple in the KG implies
its falsiness and under the open-world assumption (OWA), the
non-existence of a triple in the KG neither implies its falsiness nor
truthiness. Most real-world KGs are constructed under the OWA
to reflect their relative incompleteness with respect to true triples
and typical lack of triples known to be false.

Link prediction on KGs constructed under the OWA is a popular
approach for addressing their relative incompleteness that can be
conceptualized as a binary classification task on triples. However,
the lack of false triples leads to a positive unlabeled learning sce-
nario [6] which requires negative sampling i.e., randomly labeling
some unknown triples as false during the training and evaluation
of machine learning models like knowledge graph embedding mod-
els (KGEMs). Partially because these techniques introduce bias to
classification metrics whose formulation depends on true negatives
and false negatives (such as the accuracy, 𝐹1, and ROC-AUC), the
last ten years of KGEM literature has nearly exclusively used the
rank-based evaluation metrics: hits at 𝑘 (H𝑘 ), mean rank (MR), and
mean reciprocal rank (MRR).

Despite their ubiquity, these metrics are not comparable when
applied to datasets of different sizes and properties and lack a corre-
sponding theoretical framework for describing their properties and
shortcomings. For example, there is recent interest in applying link
prediction with KGEMs to real-world tasks in biomedicine such as
drug repositioning, target identification, and side effect prediction.
However, there are several choices of biomedical KGs for training
and evaluation, each formulated with different entities, relations,
and source databases [8]. Because the choice of KG can meaning-
fully impact downstream applications, hyperparameter search and
evaluation must also consider and compare different KGs, which,
without rank-based evaluation metrics that are comparable across
datasets nor theory to help articulate the issue, is not possible.

This work addresses these limitations by making the following
contributions: (1) Proposes a theoretical foundation for rank-based
evaluation metrics; (2) Proposes and characterizes novel rank-based
evaluation metrics with alternative rank transformations and alter-
native aggregation operations based on special cases of the gener-
alized power mean [10]; (3) Derives probabilistic adjustments for
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existing and novel rank-based evaluation metrics inspired by [7, 30].
We implemented the proposed novel metrics and made them avail-
able as part of the PyKEEN [2] software package1.

2 BACKGROUND
2.1 Generating Ranks
Given a set of entities E, a set of relationsR, a knowledge graphK ⊆
E×R×E, disjoint testing and validation triplesT𝑡𝑒𝑠𝑡 ,T𝑒𝑣𝑎𝑙 ⊆ K , and
a KGEM with scoring function 𝑔 : E × R × E → R (e.g., TransE [9]
has score(ℎ, 𝑟, 𝑡) = −∥eℎ +r𝑟 −e𝑡 ∥2), evaluation concurrently solves
two tasks as described by [22]:

(1) In right-side prediction, for each triple (ℎ, 𝑟, 𝑡) ∈ T𝑒𝑣𝑎𝑙 , we
score candidate triples {(ℎ, 𝑟, 𝑒) | 𝑒 ∈ E} using 𝑔.

(2) In left-side prediction, for each triple (ℎ, 𝑟, 𝑡) ∈ T𝑒𝑣𝑎𝑙 , we
score candidate triples {(𝑒, 𝑟, 𝑡) | 𝑒 ∈ E} using 𝑔.

In each task, candidate triples are sorted in descending order
based on their scores, and are then assigned a rank based on their
1-indexed sort position. In the (optional) filtered setting proposed
by [9], candidate triples appearing in T𝑡𝑒𝑠𝑡 are removed from the
ordering so they do not artificially increase the ranks of true triples
(T𝑒𝑣𝑎𝑙 ) appearing later in the sorted list. A good model results in low
ranks 𝑟1, . . . , 𝑟𝑛 for the true triples, reflecting its ability to assign
high scores to true triples and low scores to negatively sampled
triples. The ranks are typically aggregated using a rank-based eval-
uation metric to quantify the performance of the KGEM with a
single number.

While the upper bound on an individual rank 𝑟𝑖 is generally
|E | for both the right- and left-side prediction tasks, the number
of candidates may be (considerably) smaller than |E |, e.g., in the
filtered setting [9] or during sampled evaluation [17, 29]2.

2.2 Aggregating Ranks
While the distribution of raw ranks gives full insight into evaluation
performance, it is much more convenient to report aggregate sta-
tistics. In this subsection, we introduce and describe three common
rank-based metrics reported in applications and evaluation of link
prediction: hits at 𝑘 , mean rank, and mean reciprocal rank.

Hits at 𝑘 . The hits at 𝑘 (H𝑘 ) (Equation 1) is an increasing metric
(i.e., higher values are better) that captures the fraction of true
entities that appear in the first 𝑘 entities of the sorted rank list.
Thus, it is tailored towards a use-case where only the top-𝑘 entries
are to be considered, e.g., due to a limited number of results shown
on a search result page. Because it does not differentiate between
cases when the rank is larger than 𝑘 , a miss with rank 𝑘 +1 and 𝑘 +𝑑
where 𝑑 ≫ 1 have the same effect on the final score. Therefore, it
is less suitable for the comparison of different models.

H𝑘 (𝑟1, . . . , 𝑟𝑛) =
1
𝑛

𝑛∑︁
𝑖=1
I[𝑟𝑖 ≤ 𝑘] ∈ [0, 1] (1)

where the indicator function I is defined as I[𝑥 ≤ 𝑦] = 1 for 𝑥 ≤ 𝑦

and 0 otherwise.

1https://github.com/pykeen/pykeen
2E.g., for OGB-LSC WikiKG2, 1,001 candidates are considered for |E | ≈ 80𝑀 , i.e.,
𝑛 < 10−5 |E |.

Table 1: Desiderata for rank-based metrics

Property Constraint MR MRR H𝑘

Fixed optimum 𝑓 (1) = 𝑐opt. ✘ ✔ ✔

Asymp. pessimum lim𝑟→∞ 𝑓 (𝑟 ) = 𝑐pes. ✘ ✔ ✔

Anti-monotonic 𝑟 > 𝑟 ′ → 𝑓 (𝑟 ) < 𝑓 (𝑟 ′) ✘ ✔ ✘

Size invariant E[𝑓 ] ̸∝ 𝑛 ✘ ✘ ✘

Mean rank. The mean rank (MR) (Equation 2) is a decreasing
metric (i.e., lower values are better) that corresponds to the arith-
metic mean over ranks of true triples. It has the advantage over H𝑘

that it is non-parametric and better reflects average performance.

MR(𝑟1, . . . , 𝑟𝑛) =
1
𝑛

𝑛∑︁
𝑖=1

𝑟𝑖 ∈ [1,∞] (2)

Mean reciprocal rank. The mean reciprocal rank (MRR) (Equa-
tion 3) is an increasing metric that corresponds to the arithmetic
mean over the reciprocals of ranks of true triples. The construc-
tion of the MRR biases it towards changes in low ranks without
completely disregarding high ranks like the H𝑘 . It can therefore
be considered as a soft a version of H𝑘 that is less sensitive to out-
liers and is often used during early stopping due to this behavior.
While it has been argued that MRR has theoretical flaws [13], these
arguments are not undisputed [25].

MRR(𝑟1, . . . , 𝑟𝑛) =
1
𝑛

𝑛∑︁
𝑖=1

𝑟−1𝑖 ∈ (0, 1] (3)

3 AN ANALYSIS OF RANK-BASED METRICS
A general form of a rank-based metricM over ranks 𝑟1, . . . , 𝑟𝑛 ∈ N
is M(𝑟1, . . . , 𝑟𝑛) = 𝑔

(
⊕𝑛
𝑖=1 𝑓 (𝑟𝑖 )

)
where 𝑓 : N ↦→ R is a rank

transformation function, ⊕ : R𝑛 ↦→ R is an aggregation operation,
and 𝑔 : R ↦→ R is a post-aggregation transformation function.

3.1 Desiderata
After examining the strengths and weaknesses of the three most
common rank-based metrics, we outline four desiderata for rank-
based metrics that are interpretable and comparable across mod-
els/datasets/evaluation tasks in Table 1. Because each of MR, MRR,
and H𝑘 can be defined with the strictly monotonic increasing arith-
metic mean as the aggregation function, we describe our desiderata
with respect to the transformation 𝑓 applied to 𝑟𝑖 within the aggre-
gation (further explored in subsection 3.2).

We first propose that the best rank should result in a fixed op-
timum (ideally, 1) and that worse ranks should asymptotically ap-
proach a fixed pessimum (ideally, 0 for metrics with strictly non-
negative values and -1 for metrics that can take negative values),
which are both satisfied by both MRR and H𝑘 but neither by MR.

We propose that along this gradient, the metric should be strictly
anti-monotonic, meaning that, as the performance of the KGEM
improves, the predictions for true triples should improve, result in
lower ranks 𝑟𝑖 , increased values of the transformed ranks 𝑓 (𝑟𝑖 ), and
increased evaluation metrics. This is only satisfied by MRR as MR
is an increasing function (i.e., higher ranks result in higher scores)

https://github.com/pykeen/pykeen
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Table 2: The identity, reciprocal, and discrete indicator func-
tions are used in combination with various aggregation func-
tions to define the MR, MRR, H𝑘 , and four novel metrics.
The aggregation (agg.) column uses the 𝑀𝑝 notation of the
generalized Hölder mean described in Appendix Table 3.

Metric Pre-agg. 𝑓 (𝑥) Agg. Post-agg. 𝑔 (𝑥)

H𝑘 I[𝑥 ≤ 𝑘 ] 𝑀1 𝑥

MR 𝑥 𝑀1 𝑥

MRR 𝑥 𝑀−1 𝑥−1

MRR (colloquial) 𝑥−1 𝑀1 𝑥

IMR 𝑥 𝑀1 𝑥−1

HMR 𝑥 𝑀−1 𝑥

GMR 𝑥 𝑀0 𝑥

IGMR 𝑥 𝑀0 𝑥−1

and 𝑓 (𝑟𝑖 ) for H𝑘 has only two discrete values (0 and 1), and thus is
not strict in terms of monotonicity.

Because the worst rank is bounded based on the number of
candidate triples (which itself depends on the dataset and the eval-
uation procedure) rather than a constant, the same MR from the
evaluation on two different datasets of different sizes should not
be directly compared. While MRR and H𝑘 are bounded with a con-
stant, the shape of these curves are affected by the same properties
of the number of candidate triples and the same issue is applica-
ble. This situation makes the interpretation of results from even
large robustness and ablation studies (whose aims are to identify
patterns in interaction models, loss functions, regularizations, and
other properties of KGEM) challenging at best and misleading at
worst. Therefore, our final desideratum is that rank-based metrics
should be invariant to the number of candidate triples and directly
comparable across different datasets and evaluation procedures.

3.2 Insight and Discovery via Transformations
The MR, MRR, and H𝑘 metrics use the arithmetic mean as an ag-
gregation function with ⊕𝑛

𝑖=1 𝑓 (𝑟𝑖 ) =
1
𝑛

∑𝑛
𝑖=1 𝑓 (𝑟𝑖 ) and varying def-

initions for rank transformation function 𝑓 and post-aggregation
function 𝑔 as summarized in Table 2. Based on this formulation,
we propose that in addition to the colloquial formulation of MRR
using the arithmetic mean and 𝑓 (𝑥) = 𝑥−1, it can additionally be
formulated with the harmonic mean and post-aggregation function
𝑔(𝑥) = 𝑥−1. We suggest a more descriptive name for this metric
could be the inverse harmonic mean rank, or IHMR. Considering
the definition with the harmonic mean best explains why MRR has
the desired properties of an asymptotic pessimum that the MR lacks.
It further motivates the construction of two counterpart metrics,
the inverse mean rank (IMR) and the harmonic mean rank (HMR)
(respective inverses of MR and MRR) which are included in Table 2.

3.3 Insight and Discovery via Aggregations
While the typical aggregation of ranks applied after various transfor-
mations is the arithmetic mean, 1𝑛

∑𝑛
𝑖=1 𝑓 (𝑟𝑖 ), here we present alter-

nate aggregations in Table 3. The max rank and min rank would not
be useful in practice due to their susceptibility to outliers, but they

nicely demonstrate the bounds on the three Pythagorean means
and the quadratic means. Through the lens of the Pythagorean
means (i.e., special cases of the generalized Hölder mean in Table 3),
we can better explain why MR (and therefore also IMR) tends to
bias towards high ranks and MRR (and therefore also HMR) tends
to bias towards low ranks. The aggregation that compromises best
between the arithmetic mean and harmonic mean is the geometric
mean, therefore, we use it to define the geometric mean rank (GMR)
and inverse geometric mean rank (IGMR).

4 PROBABILISTIC ADJUSTMENTS
Inspired by the probabilistic adjustments to MR that resulted in
the adjusted mean rank (AMR) and the adjusted mean rank index
(AMRI) [7], we considered generalizing their derivations and ap-
plying them to MRR and H𝑘 . Similar to [7], we assume the ranking
tasks 𝑖 to be independent, and the ranks uniformly discretely dis-
tributed over [1, . . . , 𝑁𝑖 ], such that 𝑟𝑖 ∼ U(1, 𝑁𝑖 ). Note that 𝑁𝑖 may
not be constant across ranking tasks 𝑖 due to filtered evaluation [9].

4.1 Adjustments
Expectation Adjustment. The derivation of the AMR motivated
normalizing a basemetricM by its expectation such thatM∗ (𝑟1, . . . , 𝑟𝑛) =
M(𝑟1,...,𝑟𝑛)
E[M] . We found that it was only useful for metrics bounded by

[1,∞) (i.e., MR, HMR, GMR) whose adjustments were bounded by
[0, 1) and not for metrics bounded by (0, 1] (i.e., IMR, MRR, IGMR)
whose adjustments were unbounded on (0,∞). The expected value
of the adjusted metric is thus 1. Because it is not generally applica-
ble, we do not propose any new metrics using this adjustment.

Adjusted Index. The derivation of the AMRI motivated normal-
izing a base metricM by its expectation then linearly transforming
it such that the optimum value maps to 1, the expectation maps to
0, positive values can be considered good, and negative values can
be considered bad such thatM∗ (𝑟1, . . . , 𝑟𝑛) = M(𝑟1,...,𝑟𝑛)−E[M]

opt(M)−E[M] . We
use this form to propose the adjusted hits at 𝑘 (AH𝑘 ) and adjusted
mean reciprocal rank (AMRR).

Surprisingly, the derivation of AMRI from MR resulted in the
same form M−E[M]

1−E[M] for the AMRR and the AH𝑘 , despite their differ-
ent monotonicities (i.e., increasing or decreasing) and co-domains.
We note that these characteristics do result in different lower bound
behavior, which for AMRI is a constant −1 and for the AMRR and
AH𝑘 is a function of the expectation of the base metric − E[M]

1−E[M] .
Related derivations can be found in Appendix B.

𝑧-Adjustment.We finally propose a novel probabilistic adjust-
ment enabled by the central limit theorem. Because MR, MRR,
H𝑘 , and other metrics M are defined as the sum of random vari-
ables (despite their several transformations), they have asymp-
totic Gaussian characteristics. Therefore, we propose using the
standarization technique 𝑧 =

𝑥−𝜇
𝜎 to define a z-scored metric

M∗ (𝑟1, . . . , 𝑟𝑛) = M(𝑟1,...,𝑟𝑛)−E[M]√
Var[M]

. We apply this to the MR, MRR,

and H𝑘 to respectively define three new metrics: 𝑧-mean rank
(ZMR), 𝑧-mean reciprocal rank (ZMRR), and 𝑧-hits at 𝑘 (ZH𝑘 ). Re-
lated derivations can be found in Appendix B.

We note that the z-scored metrics can be monotonically mapped
with the cumulative distribution function of the standard normal
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Figure 1: Original, adjusted index, and 𝑧-adjusted metric for the mean reciprocal rank (MRR) (inverse harmonic mean rank).
Datasets are presented in increasing size from left to right Nations having the least and FB15k-237 having the most.

distribution onto the interval (0, 1) to fulfill the desiderata. How-
ever, we suggest that z-scores are adequately interpretable and
comparable without transformation, as the number of standard
deviations below or above of the expected value.

4.2 Discussion
Each of the three probabilistic adjustment strategies presented in
this work are affine transformations of the base metric with scale
and bias constants only dependent on the studied ranking task,
but independent of the investigated predictions. Thus, they can be
applied to the base metrics after computation of a pre-computed
expectation and variance that are appropriate for the dataset, e.g.,
to make results from existing publications more comparable across
datasets and splits. We provide a database of pre-computed expecta-
tions and variances for benchmark datasets included in PyKEEN [2]
stratified by split (i.e., training, testing, validation), evaluation task
(left-hand, right-hand, both), and metric on Zenodo [15].

4.3 Case Study
In order to demonstrate the improved interpretability and compa-
rability of our newly proposed adjustmented metrics and z-scored
metrics, we re-evaluated four KGEMs (ComplEx [32], RotatE [27],
TransE [9], TuckER [5]) on four datasets (WN18-RR [11], FB15k-
237 [31], Nations, and Kinships [19]) of varying size (from 14 en-
tities to 40k entities, see Appendix Table 4) reusing the optimal
hyperparameters reported in [1].

Figure 1 presents a comparison between original metric MRR, its
adjusted index AMRR, and its 𝑧-adjustment ZMRR. We first observe
that the MRR displays an anti-correlation with size of each dataset
that is not present for AMRR and ZMRR, disregarding the smallest
dataset for which the numerical behavior of the adjustments is
slightly erratic. While the original metric suggests that ComplEx
performs similarly on WN18-RR (green) and Nations (blue), the
adjusted metric shows that the difference is more remarkable. Con-
versely, the original metric suggests that TuckER performs better
on Nations than WN18-RR, while the adjusted metric shows that
when improving comparability by adjusting for size effects, TuckER
actually performs better on WN18-RR.

Finally, the 𝑧-adjusted metric enables direct comparison between
the results on different datasets while also giving insight into their
significance by normalizing against the expectation and variance
of the metric under random rankings. This adjustment reveals
that the improved original metrics on the two smaller datasets
(Kinships and Nations) were less significant than the results on the

two larger datasets (WN18-RR and FB15k-237), despite achieving
better unnormalized performance.

All configuration, trained models, results, and analysis presented
in this case study are available at https://github.com/pykeen/ranking-
metrics-manuscript and archived on Zenodo at [16].

5 CONCLUSION
In this article, we motivated and reviewed rank-based evaluation
metrics for the link prediction task on KGs before proposing desider-
ata for metrics with improved interpretability and comparability.
We developed a simple theoretical framework for describing rank-
based evaluation metrics, investigated their probabilistic properties,
and ultimately proposed several new metrics with desired prop-
erties based on alternate aggregation functions (i.e., HMR, GMR),
alternate transformations (i.e., IMR, IGMR), and probabilistic ad-
justments (i.e., AMRR, AH𝑘 , ZMR, ZMRR, and ZH𝑘 ). We provide
implementations of these metrics in PyKEEN [2] v1.8.0 with closed
form solutions for the expectation and variance of the base metrics
when possible and numeric solutions for the rest. We leave the
remaining derivations of closed forms for the metrics defined with
more complicated functions (e.g., GMR) for future work, to enable
generation of z-scored metrics for the remaining base metrics.

Generalization. While we restricted our description in this work
to the evaluation of link prediction onKGs, the discussed approaches
are directly applicable to other settings which use rank-based eval-
uation, e.g., the entity pair ranking protocol [34], entity align-
ment [12, 21, 28, 35], query embedding [3, 4, 14, 20, 23, 24], uni-
relational link prediction [18, 36], and relation detection [26].

Future Work. Existing evaluation frameworks commonly com-
pute one rank value per evaluation triple and side, then aggregate
the ranks. However, real-world KGs often contain hub entities that
occur in many triples which may therefore dominate the evaluation.
We intend to build on previous work [3, 26, 30], investigating the is-
sue using our novel metrics in a deeper investigation of rank-based
evaluation of the link prediction task on knowledge graphs.
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A ADDITIONAL TABLES
A.1 Generalized Hölder Mean

Table 3: Aggregation functions formulated with the gener-

alized Hölder (i.e., power) mean𝑀𝑝 (𝑥1, . . . , 𝑥𝑛) = 𝑝

√︃
1
𝑛

∑𝑛
𝑖=1 𝑥

𝑝

𝑖

as defined in [10]. Note that lim𝑝→0𝑀𝑝 asymptotically ap-
proaches the geometric mean.

Name p Definition

Max +∞ max
𝑖

𝑓 (𝑟𝑖 )
.
.
.

.

.

.
.
.
.

Quadratic Mean 2 2
√︃

1
𝑛

∑𝑛
𝑖=1 𝑓 (𝑟𝑖 )2

Arithmetic Mean 1 1
𝑛

∑𝑛
𝑖=1 𝑓 (𝑟𝑖 )

Geometric Mean 0 𝑛

√︃∏𝑛
𝑖=1 𝑓 (𝑟𝑖 )

Harmonic Mean -1
( 1
𝑛

∑𝑛
𝑖=1 𝑓 (𝑟𝑖 )−1

)−1
.
.
.

.

.

.
.
.
.

Min −∞ min
𝑖

𝑓 (𝑟𝑖 )

A.2 Datasets
As standard rank-based metrics depend on the number of entities,
we chose datasets whose number of entities spanned several orders
of magnitudes, from 101 to 104, for the case study presented in
subsection 4.3. We present statistics on these datasets in Table 4.

Table 4: Dataset statistics

Dataset |E | |R | |Ttrain |

Nations 14 55 1,592
Kinships 104 25 8,544
FB15k-237 14,505 237 272,115
WN18-RR 40,559 11 86,835

B DERIVATIONS OF ADJUSTMENTS
For derivation of the adjustments, we assume each ranking task 𝑟𝑖
to be independent and distributed according to a discrete uniform
distribution 𝑟𝑖 ∼ U(1, 𝑁𝑖 ), i.e., 𝑟𝑖 ∈ [1, . . . , 𝑁𝑖 ]. While the upper
bound 𝑁𝑖 may vary by ranking task 𝑖 , e.g., due to filtered evaluation,
we also provide simplified formulas for the case it remains constant
throughout the following derivations such that ∀𝑖 : 𝑁𝑖 = 𝑁 , i.e., the
individual ranks are independent and identically distributed i.i.d
according to U(1, 𝑁 ). We denote equivalences asserted under this
assumption with ∗

=. The following derivations use the linearity of
the expectation E [𝑎𝑋 + 𝑏] = 𝑎 · E [𝑋 ] + 𝑏 and the the variance of
an affine transformation, Var [𝑎𝑋 + 𝑏] = 𝑎2 · Var [𝑋 ] for constant
𝑎, 𝑏 ∈ R.

B.1 Adjusting the MR
We begin by briefly recapitulating the derivation of the adjusted
(arithmetic) mean rank from [7] by first deriving the expectation of
the MR (Equation 6). The expectation and variance of a uniformly
distributed discrete variable 𝑋 ∼ U(𝑎, 𝑏) are respectively E [𝑋 ] =
𝑏+𝑎
2 and Var [𝑋 ] =

(𝑏−𝑎+1)2−1
12 . Given our uniformly distributed

variable 𝑟𝑖 with parameters 𝑎 = 1 and 𝑏 = 𝑁𝑖 , we get the following
expectation:

E [𝑟𝑖 ] =
𝑁𝑖 + 1

2
∗
=

𝑁 + 1
2

(4)

The variance of 𝑟𝑖 is given as:

Var [𝑟𝑖 ] =
(𝑁𝑖 − 1 + 1)2 − 1

12
=

𝑁 2
𝑖
− 1

12
∗
=

𝑁 2 − 1
12

(5)

Consequently, the expectation of the MR metric is given as:

E [MR] = E
[
1
𝑛

𝑛∑︁
𝑖=1

𝑟𝑖

]
=

1
𝑛

𝑛∑︁
𝑖=1
E [𝑟𝑖 ] =

1
𝑛

𝑛∑︁
𝑖=1

𝑁𝑖 + 1
2

∗
=

𝑁 + 1
2

(6)
The variance of the MR metric is given as:

Var [MR] = Var
[
1
𝑛

𝑛∑︁
𝑖=1

𝑟𝑖

]
=

1
𝑛2

𝑛∑︁
𝑖=1
Var [𝑟𝑖 ]

=
1
𝑛2

𝑛∑︁
𝑖=1

𝑁 2
𝑖
− 1

12
=

1
12 · 𝑛2

𝑛∑︁
𝑖=1

(𝑁 2
𝑖 − 1) ∗

=
𝑁 2 − 1
12 · 𝑛

(7)

B.1.1 Chance-adjusted MR. The chance-adjusted MR (called ad-
justed mean rank (AMR) in [7]) is given as:

MR∗ (𝑟1, . . . , 𝑟𝑛) =
MR(𝑟1, . . . , 𝑟𝑛)
E [MR]

∗
=

2
𝑁 (𝑁 − 1)

𝑛∑︁
𝑖=1

𝑟𝑖 (8)

B.1.2 Re-indexed Chance-adjusted MR. The authors of [7] intro-
duced a re-indexed variant of the AMR named AMRI that is given
as follows:

AMRI(𝑟1, . . . , 𝑟𝑛) = 1 − 𝑀𝑅(𝑟1, . . . , 𝑟𝑛) − 1
E [MR − 1] ∈ [−1, 1] (9)

B.2 Adjusting the MRR
Let 𝐻𝑚 (𝑛) denote the generalized harmonic number3, i.e.,

𝐻𝑚 (𝑛) =
𝑛∑︁
𝑖=1

𝑖−𝑚 (10)

For𝑚 = 1, we abbreviate 𝐻 (𝑛) := 𝐻1 (𝑛). While (Generalized) Har-
monic numbers do not have a simple closed-form representation,
we can easily pre-compute generalized harmonic numbers up to a
fixed number, e.g., the number of entities.
The expectation of the inverse of an individual rank, 𝑟−1

𝑖
is given as

E[𝑟−1𝑖 ] = 1
𝑁𝑖

𝑁𝑖∑︁
𝑖=1

𝑖−1 =
𝐻 (𝑁𝑖 )
𝑁𝑖

(11)

3https://en.wikipedia.org/wiki/Harmonic_number#Generalized_harmonic_numbers

https://en.wikipedia.org/wiki/Harmonic_number#Generalized_harmonic_numbers
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Thus, we have for the expectation of the MRR:

E[𝑀𝑅𝑅] = E
[
1
𝑛

𝑛∑︁
𝑖=1

𝑟−1𝑖

]
=

1
𝑛

𝑛∑︁
𝑖=1
E

[
𝑟−1𝑖

]
=

1
𝑛

𝑛∑︁
𝑖=1

𝐻 (𝑁𝑖 )
𝑁𝑖

∗
=
𝐻 (𝑁 )
𝑁

(12)

The variance of 𝑟−1
𝑖

is given as

Var[𝑟−1𝑖 ] = 1
𝑁𝑖

𝑁𝑖∑︁
𝑖=1

(
𝑖−1 − E[𝑟−1𝑖 ]

)2
=

1
𝑁𝑖

𝑁𝑖∑︁
𝑖=1

(
𝑖−1 − 𝐻 (𝑁𝑖 )

𝑁𝑖

)2
=

1
𝑁𝑖

𝑁𝑖∑︁
𝑖=1

(
𝑖−2 − 2𝑖−1 · 𝐻 (𝑁𝑖 )

𝑁𝑖
+

(
𝐻 (𝑁𝑖 )
𝑁𝑖

)2)
=

(
𝐻 (𝑁𝑖 )
𝑁𝑖

)2
− 2 · 𝐻 (𝑁𝑖 )

𝑁 2
𝑖

·
(
𝑁𝑖∑︁
𝑖=1

𝑖−1
)
+ 1
𝑁𝑖

𝑁𝑖∑︁
𝑖=1

𝑖−2

=
𝐻 (𝑁𝑖 )2

𝑁 2
𝑖

− 2 · 𝐻 (𝑁𝑖 )2

𝑁 2
𝑖

+ 𝐻2 (𝑁𝑖 )
𝑁𝑖

=
𝐻 (𝑁𝑖 )2 − 2 · 𝐻 (𝑁𝑖 )2 + 𝑁𝑖 · 𝐻2 (𝑁𝑖 )

𝑁 2
𝑖

=
𝑁𝑖 · 𝐻2 (𝑁𝑖 ) − 𝐻 (𝑁𝑖 )2

𝑁 2
𝑖

(13)

Thus, the variance of the MRR is given as

Var[𝑀𝑅𝑅] = Var
[
1
𝑛

𝑛∑︁
𝑖=1

𝑟−1𝑖

]
=

1
𝑛2

𝑛∑︁
𝑖=1
Var

[
𝑟−1𝑖

]
=

1
𝑛2

𝑛∑︁
𝑖=1

𝑁𝑖 · 𝐻2 (𝑁𝑖 ) − 𝐻 (𝑁𝑖 )2

𝑁 2
𝑖

∗
=

𝑁 · 𝐻2 (𝑁 ) − 𝐻 (𝑁 )2
𝑛 · 𝑁 2

(14)

B.3 Adjusting the Hits at 𝑘
The expectation of H𝑘 is derived first by deriving the expectation
of the discrete indicator function 𝑓 (𝑥) = I [𝑥 ≤ 𝑘] (Equation 17).
Considering the assumption of a discrete uniform distribution of
𝑟𝑖 , we have

I [𝑥 ≤ 𝑘] ∼ Bernoulli(𝑝𝑖 ) (15)

where

𝑝𝑖 =
min{𝑘, 𝑁𝑖 }

𝑁𝑖
= min

{
𝑘

𝑁𝑖
, 1

}
(16)

Thus, we obtain
E [I[𝑟𝑖 ≤ 𝑘]] = 𝑝𝑖 (17)

and for the variance:

Var [I[𝑟𝑖 ≤ 𝑘]] = 𝑝𝑖 · (1 − 𝑝𝑖 ) (18)

The expectation of the H𝑘 metric is given as:

E[𝐻𝑘 ] = E
[
1
𝑛

𝑛∑︁
𝑖=1
I[𝑟𝑖 ≤ 𝑘]

]
=

1
𝑛

𝑛∑︁
𝑖=1
E [I[𝑟𝑖 ≤ 𝑘]]

=
1
𝑛

𝑛∑︁
𝑖=1

𝑝𝑖
∗
= min

{
𝑘

𝑁
, 1

} (19)

The variance of the H𝑘 metric is given as:

Var[𝐻𝑘 ] = Var
[
1
𝑛

𝑛∑︁
𝑖=1
I[𝑟𝑖 ≤ 𝑘]

]
=

1
𝑛2

𝑛∑︁
𝑖=1
Var [I[𝑟𝑖 ≤ 𝑘]]

=
1
𝑛2

𝑛∑︁
𝑖=1

𝑝𝑖 · (1 − 𝑝𝑖 )
∗
=

{
𝑘 (𝑁−𝑘)
𝑛2 ·𝑁 2 if 𝑘 ≤ 𝑁

0 else

(20)

B.3.1 Chance-adjusted H𝑘 . The chance-adjusted H𝑘 is given as:

𝐻∗
𝑘
(𝑟1, . . . , 𝑟𝑛) =

𝐻𝑘 (𝑟1, . . . , 𝑟𝑛)
E [𝐻𝑘 ]

(21)

B.3.2 Re-indexed Chance-adjusted H𝑘 . Combining the facts that
ranks are 1-indexed and the 𝐻𝑘 ∈ [0, 1], the H𝑘 can be adjusted
as in Equation 22. A negative value of the AH𝑘 corresponds to
performance below random, zero corresponds to random perfor-
mance, and 1 to optimal performance. The adjustment for H𝑘 is
affine with respect to a dataset’s filtering constant, so it can be
applied to results after evaluation.

𝐴𝐻@𝑘 =
𝐻𝑘 − E[𝐻𝑘 ]
1 − E[𝐻𝑘 ]

∈
(
− E[𝐻𝑘 ]
1 − E[𝐻𝑘 ]

, 1
]

(22)

Note the lower bound was calculated by inserting min𝐻𝑘 as the
value for 𝐻𝑘 , which is 0.

B.4 Adjusting the GMR

E[𝐺𝑀𝑅] = E

(

𝑛∏
𝑖=1

𝑟𝑖

)1/𝑛
= E

[
𝑛∏
𝑖=1

𝑟
1/𝑛
𝑖

]
=

𝑛∏
𝑖=1
E

[
𝑟
1/𝑛
𝑖

]
= exp

(
𝑛∑︁
𝑖=1

logE
[
𝑟
1/𝑛
𝑖

] )
(23)
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The last transformation leads to increased numerical precision.
Moreover, we have

logE
[
𝑟
1/𝑛
𝑖

]
= log

1
𝑁𝑖

𝑁𝑖∑︁
𝑘=1

𝑘1/𝑛

= log
1
𝑁𝑖

+ log
𝑁𝑖∑︁
𝑘=1

𝑘1/𝑛

= − log𝑁𝑖 + log
𝑁𝑖∑︁
𝑘=1

exp
(
log

(
𝑘1/𝑛

))
= − log𝑁𝑖 + log

𝑁𝑖∑︁
𝑘=1

exp
(
1
𝑛
· log𝑘

)
(24)

The last transformations permit using specialized log-sum-exp ker-
nels with increased numerical precision4.

B.5 Remaining Adjustments
Identifying closed-form expectations for harmonicmean rank (HMR),
inverse geometric mean rank (IGMR), and inverse mean rank (IMR)
come from the difficulty of introducing inverses. For these, we imple-
mented a simple workflow to numerically estimate the adjustment
constant in PyKEEN that can be applied as an affine transformation
after the fact.

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html
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