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ABSTRACT

With Graph Neural Network (GNN) explainability methods increas-
ingly used to understand GNN predictions in critical real-world
applications, it is essential to reliably evaluate the correctness of
generated explanations. However, assessing the quality of GNN
explanations is challenging as existing evaluation strategies depend
on specific datasets with no or unreliable ground-truth explanations
and GNNmodels. Here, we introduceG-XAI Bench, an open-source
graph explainability library providing a systematic framework in
PyTorch and PyTorch Geometric to compare and evaluate the relia-
bility of GNN explanations. G-XAI Bench provides comprehensive
programmatic functionality in the form of data processing func-
tions, GNN model implementations, collections of synthetic and
real-world graph datasets, GNN explainers, and performance met-
rics to benchmark any GNN explainability method. We introduced
G-XAI Bench to support the development of novel methods with
a strong bent towards developing the foundations of which GNN
explainers are most suitable for specific applications and why.
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1 INTRODUCTION

As Graph Neural Networks (GNNs) are being increasingly used for
learning representations of graph-structured data in high-stakes
applications, such as criminal justice [1], molecular chemistry [19]
and biological networks [10, 28], it becomes critical to ensure that
the relevant stakeholders can understand and trust their function-
ality. To this end, previous work developed several methods to
explain predictions made by GNNs [4, 8, 13, 16–18, 20, 23, 25].

With the increase in newly proposed GNN explanation meth-
ods, it is critical to ensure their reliability. However, explainability
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in graph machine learning is still a nascent area and lacks both
standardized evaluation strategies as well as reliable benchmarks
to evaluate, test, and compare GNN explanations [2]. As a result,
current approaches tend to base their analysis on specific real-
world [19] and synthetic [7] datasets with limited ground-truth
explanations. Further, GNN explainability research suffers from the
following: i) evaluation strategies are methodologically weak as
they can be solved using trivial baselines (e.g., random nodes or
edges as explanations) [2]; ii) evaluation strategies do not provide
a standard toolkit for benchmarking different kinds of explana-
tion methods. While previous studies developed specific bench-
mark datasets [7, 19], relying on those benchmarks and associated
ground-truth explanations is insufficient as they are not indicative
of diverse real-world applications [2]. This gets further complicated
by mismatches between GNN explanations as they are used in a
real-world application versus in a benchmark.

To address the above challenges, we introduce G-XAI Bench, an
explainability toolkit that provides the research community with a
comprehensive and diverse resource to systematically access, evalu-
ate, and compare GNN explanations across the entire range of GNN
explainers and underlying GNN predictors. G-XAI Bench provides
a set of versatile data loaders, data processing functions, visualiz-
ers, real-world graph datasets with ground-truth explanations, and
evaluation metrics to reliably benchmark GNN explanations.
Relationship to existing graph benchmarks. Prior benchmarks
in graph machine learning literature, such as Open Graph Bench-
mark (OGB) [11], Graph Robustness Benchmark (GRB) [27], GN-
NMark [5], GraphGT [6], MalNet [9], Therapeutics Data Com-
mons [12], and EFO-1-QA [24], focus on providing resources to
compare and evaluate GNN predictors, quantify stability/robustness
of GNN predictors, scalability to very large graphs, etc. As these
benchmarks already provide great support for the development
and benchmarking of GNN predictors, G-XAI Bench aims to sup-
port the study of GNN explainers instead of the underlying GNN
predictors. To this end, prior research on evaluating GNN explana-
tions mainly leveraged ground-truth explanations associated with
specific datasets [19]. As such, it cannot be used for benchmark-
ing GNN explainers because of numerous reasons, including the
pitfalls outlined by Faber et al. [7]. In contrast, G-XAI Bench pro-
vides a broader ecosystem for benchmarking state-of-the-art GNN
explainers on diverse datasets and performance metrics.

2 LIBRARY OVERVIEW

G-XAI Bench is a general-purpose library that provides a com-
prehensive list of functions to systematically evaluate the quality
of GNN explanations. For a given GNN model trained on a graph
dataset, the library allows the use of any state-of-the-art GNN expla-
nation method to generate explanations on the model’s prediction.
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Figure 1: Overview of G-XAI Bench: G-XAI Bench provides i) dataloader classes for GraphXAI-ready synthetic and real-world

datasets with ground-truth explanations for evaluating GNN Explainers; ii) implementation of explanationmethods compatible

with deep learning frameworks, such as PyTorch and PyTorch Geometric libraries; iii) visualization functions for GNN explainers;

iv) utility functions to support new GNN explainers; and v) a diverse set of performance metrics to evaluate the reliability of

explanations generated by GNN explainers.

To this end, G-XAI Bench provides the complete evaluation frame-
work with: i) a dataset generator that can handle both real-world
and synthetic datasets with/without ground-truth explanations,
ii) GNN explanation method(s) that takes a prediction from the
underlying GNN model and generates an explanation for it, and iii)
quantifying the reliability of the output explanations using perfor-
mance metrics.

G-XAI Bench library is thoroughly documented and includes
test scripts for distinct use-cases and graph machine learning tasks,
including comparing the reliability of state-of-the-art GNN explain-
ers using performance metrics like faithfulness, stability, and fair-
ness, and visualizing output explanations on a node-, edge-, or
graph-level. Further, G-XAI Bench provides graph and explanation
functions compatible with deep learning frameworks, such as Py-
Torch and PyTorch Geometric libraries. Our explainability library
provides a pipeline where new datasets (both real-world and syn-
thetic), explanation methods, and performance metrics can be easily
integrated. Finally, the first version of our graph explainability li-
brary focuses on the node- and graph-classification downstream
tasks, but in the planned future releases, we are working towards ex-
tending the applicability of the library to other graph downstream
tasks like link-prediction.

3 LIBRARY DESIGN

We design G-XAI Bench as an open-source library that substi-
tutes existing scattered and complex evaluation strategies with an
ecosystem of Graph XAI-ready datasets, models, evaluation met-
rics, and visualization scripts with minimal dependency on external
packages and easy-to-use classes with minimal implementation
efforts (Figure 1). Below we describe diverse functionality useful
for systematic access and evaluation of GNN explainers.
Dataset class. The Dataset class in G-XAI Bench comprises of the:
i) NodeDataset class, and ii) GraphDataset classes. These classes
provide several utility function for easier and faster incorporation
of new datasets in the evaluation pipeline of GNN explainers. The
dataset classes in G-XAI Bench have been developed to output
Graph XAI-ready datasets, i.e., we provide ground-truth explana-
tions along with every node or graph output by the dataloader.

Every synthetic and real-world datasets inherit this Dataset classes,
e.g., for the MUTAG dataset, we have class MUTAG(GraphDataset).
Explanation class. The library is centered on the Explanation
class capable of storing multiple types of explanations produced
by GNN explainers. G-XAI Bench provides a _BaseExplainer class
that is a parent class to all explanation methods in our current
release. In particular, the _BaseExplainer class contains several
functions, such as _get_embedding(), _set_masks() for setting the
output explanation, _predict() for getting model predictions, and
get_explanation_node() for storing the output explanation using
the underlying model, helpful for evaluating an output explanation.
Visualization. G-XAI Bench provides diverse functions that sup-
ports the visualization of explanation from all state-of-the-art GNN
explainers. In particular, for a given explanation, a user can leverage
the visualization function to qualitatively compare both node- and
graph-level explanations. In addition, all function implementations
are parameterized and user-friendly, e.g., researchers and practi-
tioners can change the color and weight interpretation of an output
explanation. In Figure 2, we show the output explanation from four
different GNN explainers as produced by our visualization func-
tion. For simplicity, we include the visualization function inside the
Explanation class described above.
Evaluation class. In contrast to existing benchmarks, the proposed
G-XAI Bench provides an extensive list of performance metrics
pertaining to key desiderata of GNN explainers as described in
Agarwal et al. [2], i.e., accuracy, faithfulness, stability, and fairness.
In particular, all evaluation metrics leverage predicted explanations,
ground-truth explanations, and other user-controlled parameters
like top-𝑘 features. G-XAI Bench package all these metrics and
utility functions inside the Metrics class.
Figure 3 shows a code snippet for evaluating the correctness of
output explanations for a given GNN prediction in G-XAI Bench.

4 DATASETS

G-XAI Bench incorporates synthetic and real-world graph datasets
with ground-truth explanations to benchmark the quality of any
GNN explainer. In addition, our well-documented dataset class (de-
tailed in Section 3) allows researchers and practitioners to integrate
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Figure 2: Visualization of four different explainers from theG-XAI Bench library on the BA-Shapes dataset. The visualization is

for explaining the prediction of node 𝑢. We show the 𝐿 +1-hop around node 𝑢, where 𝐿 is the number of layers of the GNNmodel

predicting on the dataset. Two colorbars indicate the intensity of attribution scores for the node and edge explanations. Note that

edge importance is not defined for every method, so edges are simply set to black to indicate that the method does not provide

edge scores. The visualization tools in G-XAI Bench allow users to compare the explanations of different GNN explainers,

such as gradient-based methods (Gradient and Grad-CAM) and perturbation-based methods (GNNExplainer and SubgraphX).

Figure 3: An example of explaining a prediction in theG-XAI

Bench pipeline. With just a few lines of code, one can cal-

culate an explanation for a node or graph, calculate metrics

based on that explanation, and visualize the explanation.

new datasets into G-XAI Bench. Below we describe few existing
datasets from our library.

4.1 Synthetic Graphs

In the initial release of G-XAI Bench, we follow Ying et al. [25] and
incorporate BA-Shapes node classification dataset. We start with a
base Barabasi-Albert (BA) [3] graph using 𝑁 nodes (e.g., 𝑁 = 300)
and a set of 𝐾 (e.g., 𝐾 = 80) five-node “house”-structured motifs
randomly attached to nodes of the base graph. The final graph is
perturbed by adding random edges. The nodes in the output graph

are categorized into four classes corresponding to nodes at the top,
middle, bottom of houses, and nodes that do not belong to a house.

4.2 Real-world Graphs

In addition to synthetic datasets, G-XAI Bench library includes
real-world graph datasets with ground-truth explanations. Here, we
incorporate popular benchmark datasets from molecular chemistry
and biology employed in previous works [15, 19].We integrate these
datasets as they contain a specific pattern (e.g., a certain chemical
group in a molecule) which represents ground-truth explanations.
Below, we discuss the details of each of the real-world datasets that
we employ and their ground-truth explanations:
MUTAG [15] dataset contains 188 molecular graphs labeled into
two classes according to their mutagenic properties, i.e., effect on
the Gram-negative bacterium S. typhimuriuma. During training, a
GNN can chose either NH2 or NO2 chemical groups to learn to pre-
dict mutagenicity. Therefore, any combination of these molecules
can be used as a ground-truth explanation for evaluating the quality
of an output explanation.
Alkane-Carbonyl [19] dataset contains 1125 molecular graphs
labeled into two classes where a positive sample indicates a mol-
ecule that contains an unbranched alkane and a carbonyl (C=O)
functional group. The ground-truth explanations consist of any
combinations of both alkane and carbonyl functional groups within
a given molecule.
Recidivism [14] dataset has 18,876 nodes representing defendants
who got released on bail at the U.S. state courts during 1990-2009.
Defendants are connected based on the similarity of past crimi-
nal records and demographics. The goal is to classify defendants
into bail vs. no bail considering race information as the protected
attribute.

5 EXPERIMENTS AND RESULTS

To demonstrate the capabilities and utility of G-XAI Bench, we sys-
tematically evaluate and compare the quality of 9 state-of-the-art
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Dataset Method GEA (↑) GEF (↓)
Random 0.170±0.028 0.185±0.015
Grad 0.303±0.044 0.163±0.016
GradCAM 0.603±0.043 0.170±0.015

BA-Shapes GuidedBP 0.825±0.034 0.168±0.017
Integrated Grad (IG) 0.527±0.050 0.182±0.013
GNNExplainer 0.538±0.025 0.177±0.013
PGMExplainer 0.480±0.032 0.172±0.012
PGExplainer 0.319±0.032 0.156±0.014
SubgraphX 0.223±0.020 0.165±0.010

Random 0.081±0.043 0.383±0.077
Grad 0.001±0.001 0.732±0.070
GradCAM 0.418±0.077 0.385±0.078

MUTAG GuidedBP 0.003±0.003 0.740±0.069
Integrated Grad (IG) 0.423±0.052 0.118±0.051
GNNExplainer 0.149±0.017 0.403±0.079
PGMExplainer 0.010±0.009 0.403±0.079
PGExplainer 0.222±0.016 0.403±0.079
SubgraphX 0.027±0.015 0.515±0.077

Random 0.034±0.006 0.295±0.030
Grad 0.011±0.003 0.327±0.031
GradCAM 0.005±0.003 0.536±0.033

Alkane-
Carbonyl

GuidedBP 0.028±0.003 0.572±0.033
Integrated Grad (IG) 0.027±0.004 0.001±0.001
GNNExplainer 0.048±0.006 0.326±0.031
PGMExplainer 0.016±0.005 0.234±0.028
PGExplainer 0.067±0.007 0.183±0.026
SubgraphX 0.020±0.005 0.419±0.032

Table 1: Benchmarking state-of-the-art GNN explainers for

synthetic and molecular datasets with ground-truth expla-

nations. Arrows (↑/↓) indicate the direction of better perfor-

mance. Note that stability and fairness performance metrics

do not apply here because generating plausible perturbations

for synthetic and molecular graphs is non-trivial and they

have no protected features.

GNN explainers on both synthetic and real-world graphs. In partic-
ular, we benchmark GNN explainers using different performance
metrics to quantify the quality of explanations.
GNN Explainers. Our current G-XAI Bench release incorporates
9 GNN explanation methods, including Grad [21], GradCAM [18],
GuidedBP [4], Integrated Gradients [22], GNNExplainer [25], PG-
Explainer [17], SubgraphX [26]; PGMExplainer [23]. Finally, we
follow Agarwal et al. [2] and consider random explanations as a
controlled baseline in our experiments.
Implementation details. The G-XAI Bench provides flexibility
to incorporate any state-of-the-art GNN predictors. For brevity, we
use a 2-layer GIN model as the GNN predictor for our experiments
and show how can we utilize our library to evaluate GNN explana-
tions. The GNN model comprises of two GIN convolution layers
with ReLU non-linear activation function and a fully-connected
linear classification layer with Softmax activations. The hidden
dimensionality of the layers is set to 16. We use an Adam optimizer
with a learning rate of 1 × 10−2, weight decay of 1 × 10−5, and the
number of epochs to 1000 for training our GIN models. Following
prior works [2, 13], we select top-k (k = 25%) important nodes, node

Method GEF (↓) GES (↓) GECF (↓) GEGF (↓)
Random
Grad
GradCAM
GuidedBP
IG
GNNExplainer

0.322±0.003
0.305±0.004
0.538±0.004
0.414±0.003
0.636±0.004
0.404±0.004

0.794±0.004
0.643±0.003
0.085±0.001
0.167±0.002
0.161±0.002
0.716±0.002

0.751±0.002
0.050±0.006
0.005±0.000
0.008±0.001
0.032±0.004
0.604±0.003

0.156±0.004
0.583±0.003
0.000±0.003
0.167±0.008
0.000±0.004
0.200±0.001

Table 2: Evaluation of GNN explainers on Recidivism graph

dataset based on node explanation masks. Arrows (↑/↓) indi-
cate the direction of better performance. GradCAMmethod,

on average, produces most reliable explanations when evalu-

ated across all four performance metrics.

features, or edges for generating explanations for all graph explain-
ability methods and all other hyperparameters were set following
the authors’ guidelines. All codes and datasets are available here.
Performance metrics. G-XAI Bench follows standard practices
for measuring accuracy and Agarwal et al. [2], and considers four
broad category of performance metrics: i) Graph Explanation Ac-
curacy (GEA) measures the correctness of an explanation using
the ground-truth explanation of the input graph dataset, ii) Graph
Explanation Faithfulness (GEF) quantifies the degree of faithfulness
of an output explanation to an underlying GNN predictor, iii) Graph
Explanation Stability (GES) measures whether the output explana-
tions of a given graph and its perturbed counterpart (generated
by making infinitesimally small perturbations to the node feature
vector and associated edges) are similar, and iv) Graph Explanation
Fairness (GEC(G)F) which reports counterfactual fairness and group
fairness mismatch of a generated explanation.
Results. We evaluate the performance of GNN explanation meth-
ods on synthetic and real-world datasets. Across all three datasets
in Table 1, we find that gradient-based explanation methods like
GuidedBP and Integrated Gradient generate accurate and faithful
explanations. In particular, GuidedBP obtains a high Graph Ex-
planation Accuracy score for BA-Shapes dataset and outperform
all other GNN explainers by 52.08%. Whereas, on average across
datasets, Integrated Gradient generates the least unfaithful explana-
tions as compared to other GNN explainers. In addition, we show
the behavior of GNN explanation methods on Recidivism which
has Race as a protected attribute. In Table 2, we find that, on aver-
age across all performance metrics, GradCAM generates the most
reliable explanation as compared to other explanation methods.

6 CONCLUSION

We introduceG-XAI Bench, an open-science resource to access and
evaluate the quality of GNN explanations output by state-of-the-art
GNN explainers. G-XAI Bench provides a comprehensive frame-
work that comprises data loaders, data processing functions, visu-
alizers, real-world graph datasets with ground-truth explanations,
and evaluation metrics to reliably benchmark GNN explanations
across the entire range of GNN explainers. G-XAI Bench provides
a simple and transparent framework for evaluating explainability
methods and increasing reproducibility. We believe that G-XAI
Bench can help the Graph XAI community in both developing and
evaluating new GNN explainers.

https://anonymous.4open.science/r/GXAI-Bench-FFD6/README.md
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