Benchmarking Large-Scale Graph Training Over Effectiveness
And Efficiency

Keyu Duan
k.duan@rice.edu
Rice University

Peihao Wang
peihaowang@utexas.edu
University of Texas at Austin

Zhangyang Wang
atlaswang@utexas.edu
University of Texas at Austin

ABSTRACT

Large-scale graph learning is a notoriously challenging problem in
the community of network analytics and graph neural networks
(GNNs). Due to the nature of evolving graph structures (a sparse
matrix) into the training process, vanilla message-passing-based
GNN s always failed to scale up, limited by training speed and mem-
ory occupation. Up to now, many state-of-the-art scalable GNNs
have been proposed. However, we still lack a systematic study
and fair benchmark of this reservoir to find the rationale for de-
signing scalable GNNs. To this end, we conduct a meticulous and
thorough study on large-scale graph learning from the perspective
of effectiveness and efficiency. Firstly, we uniformly formulate the
representative methods of large-scale graph training and further
establish a fair and consistent benchmark regarding effectiveness
for them by unifying the hyperparameter configuration. Secondly,
benchmarking over efficiency, we theoretically and empirically eval-
uate the time and space complexity of representative paradigms
for large-scale graph training. Best to our knowledge, we are the
first to provide a comprehensive investigation of the efficiency of
scalable GNNs, which is a key factor for the success of large-scale
graph learning. Our code is available at https://github.com/VITA-
Group/Large_Scale_GCN_Benchmarking.

KEYWORDS
Graph Neural Networks, Large-Scale Graph Training, Benchmark

ACM Reference Format:

Keyu Duan, Zirui Liu, Wenqing Zheng, Peihao Wang, Kaixiong Zhou, Tian-
long Chen, Zhangyang Wang, and Xia Hu. 2018. Benchmarking Large-Scale
Graph Training Over Effectiveness And Efficiency. In Woodstock ’18: ACM
Symposium on Neural Gaze Detection, June 03—05, 2018, Woodstock, NY. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Woodstock 18, June 03—05, 2018, Woodstock, NY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

Zirui Liu
z1105@rice.edu
Rice University

Kaixiong Zhou
Kaixiong.Zhou@rice.edu
Rice University

Wengqing Zheng
w.zheng@utexas.edu
University of Texas at Austin

Tianlong Chen
tianlong.chen@utexas.edu
University of Texas at Austin

Xia Hu
xia.hu@rice.edu
Rice University

1 INTRODUCTION

The Graph Neural Networks (GNNs) have shown great prosper-
ity in recent years [13, 22, 35, 41], and have dominated a variety
of applications, including recommender systems [14, 43], social
network analysis [11, 19, 34], scientific topological structure predic-
tion (e.g. cellular function prediction [15, 50], molecular structure
prediction [16, 44], and chemical compound retrieval [36]), and
scalable point cloud segmentation [25, 39], etc. However, though
the message passing (MP) strategy ensures GNNs’ superior per-
formance, the nature of evolving massive topological structures
prevents MP-based GNNs [10, 22, 23, 26, 35, 41, 42, 48] from scaling
to industrial-grade graph applications. Specifically, as MP requires
nodes aggregating information from their neighbors, the relevant
graph structures inevitably need preservation during forward and
backward propagation, thus occupying considerable running mem-
ory and time. For example [43], training a GNN-based recommenda-
tion system over 7.5 billion items requires three days on a 16-GPU
cluster (384 GB memory in total).

To facilitate understanding, a unified formulation of MP with k
layers is formulated as follows:

X0 = AG-D 5[AR (... (4O XOWO). k-2 | k=D (1)

where o is an activation function (e.g. ReLU) and AW jsthe weighted
adjacency matrix at i-th layer. As in Equ. 1, the key bottleneck of
vanilla MP lies on the computation of AD XD whose space com-
plexity is O(E + N), where E and N are the number of edges and
nodes. Obviously, as the number of nodes grows, it is quite chal-
lenging for a single GPU to afford such scale of consumption.

Up to now, massive efforts have been made to mitigate the afore-
mentioned issue of MP and scale up GNNs [2, 6, 9, 13, 33, 40, 45, 47,
51]. Most of them focus on approximating the iterative full-batch
MP to reduce the memory consumption for training within a single
GPU. It is worth noting that we target algorithmic scope and do
not extend to general scalability topics like distributed training
with multiple GPUs [1, 31] and quantization [30]. Briefly, previous
works encompass two branches: Sampling-based and Decoupling-
based. Namely, the former methods [2, 4, 6, 8, 13, 18, 45] perform
batch (sample)-training that utilizes sampled adjacency matrix to
approximate the full-batch MP such that the memory consumption

https://github.com/VITA-Group/Large_Scale_GCN_Benchmarking
https://github.com/VITA-Group/Large_Scale_GCN_Benchmarking
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03-05, 2018, Woodstock, NY

is considerably reduced. The latter follows the principle of per-
forming propagation (AK) X(K)y and prediction (XKW (¥)) sepa-
rately, either precomputing the propagation [1, 9, 23, 28, 40] or post-
processing with label propagation [17, 33]. Although the various
branches follow different principles, they complement each other.
Notably, the mixtures of these algorithmic components [7, 33, 46]
have achieved the state-of-the-art (SOTA) performance on presti-
gious scalable graph learning benchmarks [15]. Despite the pros-
perity of scalable GNNS, there are still plights under-explored: con-
sisting of a large amount of techniques, we lack a systematic study
of the reservoir from the perspective of effectiveness and efficiency,
without which it is unachievable to tell the rationale of the design-
ing philosophy for large-scale graph learning in practice.

Present Work. To this end, from the perspective of effectiveness, we
first establish a fair benchmark and provide a systematic study for
large-scale graph training for both Sampling-based methods (§ 2.1)
and Decoupling-based methods (§ 2.2). For each branch, we conduct
a thorough investigation on the design strategy and implementa-
tion details of typical methods. Then, we carefully examine the
sensitive hyperparameters and unify them in one "sweet point"
set by a linear greedy search, i.e., iteratively searching the optimal
value for a hyperparameter while fixing the others. For all selected
methods, the hyperparameter search was performed on representa-
tive datasets of different scales, varying from about 80, 000 nodes to
2,400, 000, including Flickr [45], Reddit [13], and ogb-products [15].
This step is a crucial precondition on our way to the ultimate as the
configuration inconsistency significantly prohibits a fair compari-
son as well as the following analysis. Nevertheless, this burdensome
work was overlooked by previous works. In addition, from the point
of efficiency — a pivotal criterion of large-scale graph learning —
we theoretically and empirically evaluate the time and space com-
plexity of representative methods. Best to our knowledge, we are
the first to provide a comprehensive benchmark of scalable GNNs
regarding speed and memory usage.

2 FORMULATIONS
2.1 Sampling-based Methods

Given the formulation of Equ. 1, sampling-based paradigm seeks
the optimal way to perform batch-training. Each batch will meet
the memory constraint of a single GPU for message passing, i.e.
AR x(K®) where A is the adjacency matrix for the k-th layer sam-
pled from the full graph. For clarity and completeness, we restate
the unified formulation of sampling-based methods as follows:

(k) _ 7(k=1) [7(k-2) A0 3 (0)yx7(0 k-2 k-1
X = Ao Ao g XWO) W k. (@)

where B; is the set of sampled nodes for the i-th layer. The key dif-
ference among sampling-based methods is how {By, ..., Br_1, B}
are sampled. Given a large-scale graph G = (V, §), they generally
encompass three paradigms:

2.1.1 Node-wise Sampling.
B = [Julu~0 Py} 3)
0681'

P is a sampling distribution; N (v) is the sampling space, i.e., the
1-hop neighbors of v; and Q denotes the number of samples. At

Keyu Duan, Zirui Liu, Wenqing Zheng, Peihao Wang, Kaixiong Zhou, Tianlong Chen, Zhangyang Wang, and Xia Hu

the very beginning, By is uniformly sampled from the entire graph.
Typically, P is implemented as the uniform distribution in Graph-
SAGE [13]. Generally, the node-wise sampling usually suffers from
the "Node Explosion" problem. Namely, the number of nodes grows
exponentially with layers, causing significant memory overhead.
Please find detailed analysis for its time and space complexity in

§4.
2.1.2 Layer-wise Sampling.

Bivi={ulu~Q Py} (4)

N (8Bi) = Uyes, N(v) denotes the 1-hop neighbors of all nodes
in B;. In FastGCN [2], the sampling distribution P is designed
regarding the node degree, where the probability for node u of being
sampled is p(u) o [|A(w, :)||%. More recently, based on FastGCN,
Zou et al. [51] propose LADIES that extends the sampling space
from N (8B;) to N(B;) U B; by adding self-loops. Notably, layer-
wise sampling mitigates the “Neighbor Explosion” problem by fixing
the sampled nodes to Q, but potentially suffers from the linking
sparsity [6, 45] that prevents it from achieving SOTA performance.

2.1.3 Subgraph-wise Sampling.
Bi=8Bp1=--=Bo={ulu~Q Pg} ®)

For one epoch, all layers share the same subgraph that is derived
from the entire graph G based on a specific sampling strategy Pg.
The sampling strategy have two paradigms: (i) GraphSAINT [45]
that samples a subset of nodes based on sampling distribution
P and then induces the corresponding subgraph as a batch; (ii)
ClusterGCN [6] that first partitions the entire graph into clusters
based on the topological structure and then select several clusters
to form a batch. We summarize representative sampling strategies
in appendix Al.1.

2.2 Decoupling-based Methods

In conventional GNNs, message passing plays a computationally
expensive and memory-consuming part. Training such GNNs on
large-scale datasets with message passing for every pass is no more
plausible. Therefore, we summarize another line of scalable GNNs
which decouple the feature aggregation and transformation opera-
tions to avoid this operation. There are two typical ways to decouple
these two operations: (i) pre-processing and (ii) post-processing.

2.2.1 Pre-processing: MP precomputating. Recalling Equ. 1, with-
out loss of generalization, we assume that Ak-D = A(k=2) _
A = A ie. the topological structure for the entire graph re-
mains the same during forward propagation, meeting most of the
cases. To decouple the two operations, message passing (AX) and
feature transformation (XW), we can first precompute the propa-
gated node representations and then train a neural network for the
downstream task based on these fused representations:

xk=AkX, X=px. X', . X5, Y=£f(X), (6

where X* can be regarded as the node representation aggregating
k-hop neighborhood information, K is the largest propagation hop,
p(+) is a function that combines the aggregated features from dif-
ferent hops, fy(+) is a feature mapping function parameterized by

Benchmarking Large-Scale Graph Training Over Effectiveness And Efficiency

GraphSAGE

5 49.16 49.75

49.16 49.66

49.26 49.87

GraphSAGE
55 83.09 95.12
83.22 95.11
331 83.48 95.10

3.25 83.64

GraphSAGE

7157 7547 | 75.04

72.69 7541 | 75.62

72.69 74.83 7539

Products
Products
Products

7242 75.16

LR WD DP

BS

HD #L

DP #E

ClusterGCN
LUz 5099|5081 | 50.98 |50.79

51.00 51.07 |50.94 50.97 51.01

5079 5075 5093 5084

ClusterGCN

95.01 9468 9553
95.12 9530 9555

9530 9546 9550

ClusterGCN

75.71

75.70

76.43

#E

Woodstock ’18, June 03-05, 2018, Woodstock, NY

50.77 4844

50.91 48.44
4844 2 49.90

48.44 51.24

9554 9628 96.00 94.26

95.63 96.15 96.31 E 93.62 | 93.06

94.99 25 9585 9409 9530

94.06

7619 76.44 8118 80.96

7549 78.67 8117 8106 8

76.18 78.20 8114 81.22

Products
Products

Adj

#Prop AR

HD

Figure 1: The greedy hyperparameter searching results for representative large-scale graph training methods.

0. We summarize three existing pre-computing schemes [9, 33, 40]
in appendix A1.2

2.2.2 Post-processing: Label Propagation. The label propagation
algorithm [12, 17, 20, 29, 37, 38, 49] diffuse labels in the graph and
make predictions based on the diffused labels. It is a classical family
of graph algorithms for transductive learning, where the nodes for
testing are used in the training procedure. The label propagation
can be written in a unified form as follows:

YR = gAY R 4 (1 -)G, 7)

The diffusion procedure iterates the formula above with k for mul-
tiple times. It requires two sets of inputs: 1) the stack of the initial
embedding of all nodes, denoted as Y ¢ RNXd; 2) the diffusion
source embedding, denoted as G € RN *d that propagate them-
selves across the edges in the graph. For the two methods in our
benchmarks, Huang et al. [17] uses residual error correlation and
is denoted as residual, and Zhu [49] set zero embeddings on test set
and is denoted as zeors.

3 BENCHMARKING OVER EFFECTIVENESS

3.1 Implementation Details

We test numerous large-scale graph training methods with a greedy
hyperparameter (HP) search to find their sweet point and the best
performance for a fair comparison. The search space is defined in
Table 1. Particularly, for label propagation, we select two represen-
tative algorithms: Huang et al. [17], the residual diffusion type, and
Zhu [49], the zeros type. The number of propagation is the maxi-
mum iteration k. The aggregation ratio is @ as in Equ. 7, and the
number of MLP layers is the number of MLP layers that precedes
the label propagation module following Huang et al. [17].

Limited by space, we select five representative approaches that
covers all branches as we introduced, including GraphSAGE [13],
LADIES [51], ClusterGCN [6], SAGN [33], and C&S [17]. We illus-
trate the selected results in Fig. 1 and place the other approaches’
results in Fig. A2. For each subplot of Fig. 1 and Fig. A2, from left to
right, each column denotes the searching results for one HP. Once
one HP was searched, its value will be fixed to the best results for

the rest HP searching. Iteratively, we obtain the best performance
at the last column. For convenience and clarity, we list the searched
optimal hyperparameter settings of all test methods in Table A4.

Table 1: The search space of hyperparameters for sampling
based methods.

Category Hyperparameter (Abbr.) ‘ Candidates
Learning rate (LR) {le — 2" 1e —3,1e — 4}
Weight Decay (WD) {le — 4", 2e — 4,4e — 4}
Sampling & Dr({pﬁ)ut Rate (Df) {0.1,0.2%,0.5, 0*7}
Precomputing Tr}ammg Ijlpoch§ (#E) {20, 30, 40, 50" }
Hidden Dimension (HD) 128,256,512
layers (#L) {2%,4,6}
Batch size? (BS) {1000%, 2000, 5000}
Diffusion Type (DT) { residual®, zeros }
Propagations (#Prop) {2,20%,50}
LP Aggregation Ratio (AR) {0.5,0.75%,0.9,0.99 }
Adj. Norm (Adj.) {D"'A, AD™!, D"1/2AD"1/2%}
Auto Scale (AS) { True*, False }
MLP Layers (#ML) {2%,3,4}

* marks the default value
@ we do not search batch size for precomputing based methods since

they do not follow a batch-training style.
b on ogb-products, we expand the training epoch to {500, 1000, 1500}
for Precomputing-based methods to guarantee convergence.

3.2 Experimental Observations

Based the HP searching results in Fig. 1, we summarize two main ex-
perimental observations as follows. Additional detailed observation
and discussion could be found in

Obs. 1. Sampling-based methods are more sensitive to the hy-
perparameters related to MP. According to Fig. 1, in comparison
with precomputing, all sampling-based methods are non-sensitive
to hyperparameters (HPs) that are related to the feature transforma-
tion matrices, including weight decay, dropout, and hidden dimen-
sion; but particularly sensitive to the MP-related HPs, including the
number of layers and batch size. For model depth, sampling-based
methods generally achieve the sweet points when the number of
layers is confined to shallow (2 ~ 4) and suffer from the oversmooth-
ing problem [5, 27, 32] as the GNN models go deeper. However, this

Woodstock ’18, June 03-05, 2018, Woodstock, NY

Table 2: The memory usage of activations and the hardware throughput (higher is better). The hardware here is a RTX 3090

Keyu Duan, Zirui Liu, Wenqing Zheng, Peihao Wang, Kaixiong Zhou, Tianlong Chen, Zhangyang Wang, and Xia Hu

GPU.
Flickr Reddit ogbn-products

Act Throughput Act Throughput Act Throughput

Mem. (MB) (iteration/s) Mem. (MB) (iteration/s) Mem.(MB) (iteration/s)
GraphSAGE [13] 230.63 65.96 687.21 27.62 415.94 37.69
FastGCN [2] 19.77 226.93 22.53 87.94 11.54 93.05
Ladies [51] 33.26 195.34 43.21 116.46 20.33 93.47
ClusterGCN [6] 18.45 171.46 20.84 79.91 10.62 156.01
GraphSAINT [45] 16.51 151.77 21.25 70.68 10.95 143.51
SGC [40] 0.01 115.02 0.02 89.91 0.01 267.31
SIGN [9] 16.99 96.20 16.38 75.33 16.21 208.52
SAGN [33] 72.94 55.28 72.37 43.45 71.81 80.04

issue is moderately mitigated in decoupling-based methods as the
model depth does not align with the number of MP hop.

Obs. 2. Datasets of different scales are dominated by different
branches. As show in Fig. 1, C&S (label propagation) outperforms
the full-batch training (GraphSAGE as introduced in Obs. 2) on
the largest dataset ogb-products by a large margin of 4.5%. In con-
trast, GraphSAGE significantly outperforms the other methods on
the smallest dataset Flickr. Remarkably, our searched results for
GraphSAGE and LP on ogb-products also reached better perfor-
mance, compared with the ones on the OGB leaderboard !. Besides,
our searched results for GraphSAGE on Flickr also reach the new
SOTA performance 53.63%. Noticing that GraphSAGE encounters
the out-of-memory (OOM) runtime error with increasing depth,
the observation partially indicates that, limited by model depth and
neighbor explosion problem, sampling-based methods is possibly
not powerful for extreme large-scale graphs to learn expressive
representations.

4 BENCHMARKING OVER EFFICIENCY

In this section, we present another benchmark regarding the effi-
ciency of scalable graph training methods. Firstly, we briefly sum-
marize a general complexity analysis in Table 3. For sampling-
based methods, we note that the time complexity is for training
GNNs by iterating over the whole graph. The time complexity
O(L||A]||oD + LND?) consists of two parts. The first part L||A||oD
is from the Sparse-Dense Matrix Multiplication,i.e., AX. The sec-
ond part LND? is from the normal Dense-Dense Matrix Multipli-
cation, i.e., (AX)W. Regarding the space complexity, we need to
store the activations of each layer in memory, which has a O(bLD)
space complexity. Note that we ignore the memory usage of model
weights and the optimizer here since they are negligible compared
to the activations. For decoupling-based methods, the training para-
digm is simplified as MLPs, and thus the complexity is the same as
the traditional mini-batch training. We do not include label propa-
gation in our analysis since it can be trained totally on CPUs. The
hyperparameter settings and other implementation details for this
part are included in Appendix. A3.

Ihttps://ogb.stanford.edu/docs/leader_nodeprop/

Table 3: The time and space complexity for training GNNs
with sampling-based and decoupling-based methods, where
b is the averaged number of nodes in the sampled subgraph
and r is the averaged number of neighbors of each node. Here
we do not consider the complexity of pre-processing sice it
can be done in CPUs.

Category ‘ Time Complexity Space Complexity
Node-wise Sampling [13] O(rLND?) O(brlD)
Layer-wise Sampling [9, 51] O(rLND?) O(brLD)
Subgraph-wise Sampling [6, 45] | O(L||A||oD + LND?) O(bLD)
Precomputing [9, 33, 40] O(LND?) O(bLD)

4.1 Experimental Observations

Here we report the hardware throughput and activation usage in
Table 2. We summarize three main observations.

Obs. 3. GraphSAGE is significantly slower and occupies more
memory compared to other baselines. This is partially because
of the large neighbor sampling threshold we set and inherently
owing to its neighborhood explosion. Namely, to compute the loss
for a single node, it requires the neighbors’ embeddings at the
down-streaming layer recursively. Please refer to § 2.1.1 for details.

Obs. 4. counter-intuitively, SGC does not occupy any activation
memory. As shown in Table 2, SGC only occupies about 0.01 MB
actual memory during training. This is because for SGC, it only
has one linear layer and the activation is exactly the input feature
matrix, which has been stored in memory. Thus, it is not accounted
towards the activation memory.

Obs. 5. In general, the speed of decoupling-based methods is
comparable to sampling-based methods. Particularly, sampling-
based methods have higher throughputs on Flickr, benefiting from
batch training. However, as the scale grows, precomputing-based
methods generally outperform. This is because they avoid comput-
ing MP on CPUs, thus significantly saving time.

REFERENCES

[1] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin
Blais, Benedek Rozemberczki, Michal Lukasik, and Stephan Giinnemann. 2020.
Scaling graph neural networks with approximate pagerank. In Proceedings of

https://ogb.stanford.edu/docs/leader_nodeprop/

Benchmarking Large-Scale Graph Training Over Effectiveness And Efficiency

[2

=

3

=

(4]

(5]

G

=

[7

[

[10

[11

[12

[13]

=
it

[15]

[16

[17

(18]

[19]

[20

[21]

[22

[23]

[24

[25]

the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2464-2473.

Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph
convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247
(2018).

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael
Mahoney, and Joseph Gonzalez. 2021. Actnn: Reducing training memory footprint
via 2-bit activation compressed training. In International Conference on Machine
Learning. PMLR, 1803-1813.

Jianfei Chen, Jun Zhu, and Le Song. 2017. Stochastic training of graph con-
volutional networks with variance reduction. arXiv preprint arXiv:1710.10568
(2017).

Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenging Zheng, Peihao Wang, Xia
Hu, and Zhangyang Wang. 2021. Bag of Tricks for Training Deeper Graph Neural
Networks: A Comprehensive Benchmark Study. arXiv preprint arXiv:2108.10521
(2021).

Wei-Lin Chiang, Xuanging Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gen: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 257-266.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Ol-
gica Milenkovic, and Inderjit S Dhillon. 2021. Node Feature Extraction by Self-
Supervised Multi-scale Neighborhood Prediction. arXiv preprint arXiv:2111.00064
(2021).

Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. 2020.
Minimal variance sampling with provable guarantees for fast training of graph
neural networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1393-1403.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael
Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198 (2020).

Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. In international conference
on machine learning. PMLR, 2083-2092.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale learn-
able graph convolutional networks. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1416-1424.
Chen Gong, Dacheng Tao, Wei Liu, Liu Liu, and Jie Yang. 2016. Label propagation
via teaching-to-learn and learning-to-teach. IEEE transactions on neural networks
and learning systems 28, 6 (2016), 1452-1465.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeuIPS. 1024-1034.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgen: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639-648.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020).
Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for pre-training graph neural networks. arXiv
preprint arXiv:1905.12265 (2019).

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. 2020.
Combining label propagation and simple models out-performs graph neural
networks. arXiv preprint arXiv:2010.13993 (2020).

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive sam-
pling towards fast graph representation learning. Advances in neural information
processing systems 31 (2018).

Xiao Huang, Qingquan Song, Yuening Li, and Xia Hu. 2019. Graph recurrent
networks with attributed random walks. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 732-740.
Masayuki Karasuyama and Hiroshi Mamitsuka. 2013. Manifold-based similarity
adaptation for label propagation. Advances in neural information processing
systems 26 (2013), 1547-1555.

George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359-392.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. 2018. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. 631-636.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deep-
gens: Can gens go as deep as cnns?. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 9267-9276.

[26

[27

(28]

[29

@
=

[31

(32]

[33

&
=)

[35

[36

[37

[38

[39

=
2

[41

[42

[43

[44

[45

[46

[47

[48

[49

o
=

[51

Woodstock ’18, June 03-05, 2018, Woodstock, NY

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020. Deepergcn:
All you need to train deeper gens. arXiv preprint arXiv:2006.07739 (2020).
Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Meng Liu and Shuiwang Ji. 2022. Neighbor2Seq: Deep Learning on Massive
Graphs by Transforming Neighbors to Sequences. arXiv preprint arXiv:2202.03341
(2022).

Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang,
and Yi Yang. 2018. Learning to propagate labels: Transductive propagation
network for few-shot learning. arXiv preprint arXiv:1805.10002 (2018).

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. 2021. EXACT:
Scalable Graph Neural Networks Training via Extreme Activation Compression.
In International Conference on Learning Representations.

Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evange-
los Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nesreen K Ahmed, and
Sasikanth Avancha. 2021. DistGNN: Scalable Distributed Training for Large-Scale
Graph Neural Networks. arXiv preprint arXiv:2104.06700 (2021).

Kenta Oono and Taiji Suzuki. 2020. Graph neural networks exponentially lose
expressive power for node classification. In International Conference on Learning
Representations.

Chuxiong Sun and Guoshi Wu. 2021. Scalable and Adaptive Graph Neural
Networks with Self-Label-Enhanced training. arXiv preprint arXiv:2104.09376
(2021).

Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. 817-826.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv 1, 2 (2017).
Nikil Wale, Ian A Watson, and George Karypis. 2008. Comparison of descrip-
tor spaces for chemical compound retrieval and classification. Knowledge and
Information Systems 14, 3 (2008), 347-375.

Fei Wang and Changshui Zhang. 2007. Label propagation through linear neigh-
borhoods. IEEE Transactions on Knowledge and Data Engineering 20, 1 (2007),
55-67.

Hongwei Wang and Jure Leskovec. 2020. Unifying graph convolutional neural
networks and label propagation. arXiv preprint arXiv:2002.06755 (2020).

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. 2019. Dynamic graph cnn for learning on point clouds. Acm
Transactions On Graphics (tog) 38, 5 (2019), 1-12.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861-6871.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In International Conference on Machine Learn-
ing. PMLR, 5453-5462.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974-983.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020).

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. Graphsaint: Graph sampling based inductive learning method.
arXiv preprint arXiv:1907.04931 (2019).

Chenhui Zhang, Yufei He, Yukuo Cen, Zhenyu Hou, and Jie Tang. 2021. Improving
the Training of Graph Neural Networks with Consistency Regularization. arXiv
preprint arXiv:2112.04319 (2021).

Wentao Zhang, Ziqi Yin, Zeang Sheng, Wen Ouyang, Xiaosen Li, Yangyu Tao,
Zhi Yang, and Bin Cui. 2021. Graph attention multi-layer perceptron. arXiv
preprint arXiv:2108.10097 (2021).

Kaixiong Zhou, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, and Xia Hu.
2019. Multi-Channel Graph Neural Networks. arXiv preprint arXiv:1912.08306
(2019).

Xiaojin Zhu. 2005. Semi-supervised learning with graphs. Carnegie Mellon
University.

Marinka Zitnik and Jure Leskovec. 2017. Predicting multicellular function through
multi-layer tissue networks. Bioinformatics 33, 14 (2017), 1190-i198.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-dependent importance sampling for training deep and large graph
convolutional networks. Advances in neural information processing systems 32
(2019).

Woodstock ’18, June 03-05, 2018, Woodstock, NY Keyu Duan, Zirui Liu, Wenqing Zheng, Peihao Wang, Kaixiong Zhou, Tianlong Chen, Zhangyang Wang, and Xia Hu

A1 MORE DETAILS OF FORMULATIONS
A1.1 Representative Graph Sampling Schemes

* Node Sampler [2, 45]: P(u) = ||Zu||2, where all nodes are sampled independently based on the normalized distribution of P. This
sampling strategy is logically equivalent to layer-wise sampling [2].

* Edge Sampler [45]: P(u,0) = m + m, where all edges are sampled independently based the edge distribution above. In our
implementation, we utilize the sampled nodes (once contained in the sampled edges) to induce the subgraph as input, which should include
more edges to help boost the performance.

* Random Walk Sampler [24, 45]: Here, we first sample a subset of root nodes uniformly, based on which we perform a random walk at a
certain length to obtain the subgraph as a batch.

* Graph Partitioner [6, 21]: We first partition the entire graph into clusters with graph clustering algorithms and then select multiple
clusters to form a batch.

A1.2 Representative Precomputing Schemes

* SGC [40]: SGC simply keeps aggregating neighborhood information for K times and feed the resultant features to a full-connected layer.
We can formulate this scheme by letting p(-) select the last element XX and fy(-) be a linear layer with readout activation: Y = o(XX@®).
* SIGN [9]: SIGN concatenates features from different hops and then fuse them as the final node representation via a linear layer. To be
more specific, p(+) is defined as X = [X xt ... XK] Q, and fy(+) is defined as a linear readout layer Y = 0(X©).

* SAGN [33]: SAGN adopts attention mechanism to combine feature representations from K hops: X = Zle Tk Xk, where T is a diagonal
matrix whose diagonal corresponds to the attention weight for each node of k-hop information. The attention weight for i-th node is
calculated by Tl.k = softmaxg (LeakyReLU(u X; + vTXj.‘)), where the subscripts slices the data matrices along the row. The feature mapping
function is selected as an MLP block with a skip connection to initial features: Y = MLPy(X + X©,).

A2 ADDITIONAL EXPERIMENT RESULTS

FastGCN

49.75 | 49.16 49.75

GraphSAINT
49.03 48.71

50.00 51.04

49.23 49.16 49.66 49.03 49.07 50.92 51.29

Flickr
Flickr
Flickr
Flickr

49.54 | 49.26 49.87 49.07 49.43 5122 51.33

48.48 49.75 49.07 49.48 51.29

GraphSAINT

93.98 94.91

FastGCN

77.23 76.99 78.00 93.70 95.59

77.50 76.99 78.81 94.91 94.51 9493 9561

Reddit
Reddit
Reddit
Reddit

78.00 77.29 78.37 94.88 94.20 9532 95.63

77.23 78.00 94.90 95.59

GraphSAINT
68.32 67.67

FastGCN
68.81 69.92 70.76

76.55 76.55

69.95 69.95 71.57 68.34 68.41 76.53 76.37

67.36 70.76 69.73 68.45 68.96 76.52 76.07

Products
Products
Products
Products

65.59 69.95 68.37 68.40

LR WD DP #E HD #L BS LR WD #E #HL DP LR WD #E HD #. DP

LR WD DP #E HD #L BS

Figure A2: More greedy hyperparameter searching results for representative large-scale graph training methods, including
FastGCN [2], GraphSAINT [45], SGC [40], SIGN [9].

We provide the searched optimal hyperparameters for all tested methods in Table A4 and show additional HP searching results in Fig. A2.
Given Fig. 1 and Fig. A2, we provide an additional observation as follows.

Obs. 6. Sampling-based methods’ performance is positively correlated with the training batch size. According to the results of the
last column of all sampling-based methods, the performance of the layer-wise and subgraph-wise sampling methods is roughly proportional
to the batch size. Expectedly, the model performance could further increase as the batch size grows till the upper bound of full-batch training
because more links can be preserved. Particularly, in our experiment, we set the number of sampled neighbors (Q in Equ. 3) of node-wise
sampling to a large threshold such that the performance of GraphSAGE can be regarded as full-batch training’s. It can be easily found that the
performance of sampling-based methods is inferior to full-batching training (GraphSAGE), further proving our conjecture that the missing
links by sampling are non-trivial.

Benchmarking Large-Scale Graph Training Over Effectiveness And Efficiency

Woodstock ’18, June 03-05, 2018, Woodstock, NY

Table A4: The searched optimal hyperparameters for all tested methods

Category Methods

Datasets

Flickr

Reddit

ogbn-products

GraphSAGE [13]

LR: 0.0001, WD: 0.0001, DP: 0.5,
EP: 50, HD: 512, #L: 4, BS: 1000

LR: 0.0001, WD: 0.0 DP: 0.2,
EP: 50, HD: 512, #L: 4, BS: 1000

LR: 0.001, WD: 0.0 DP: 0.5,
EP: 50, HD: 512, #L: 4, BS: 1000

FastGCN [2]

LR: 0.001, WD: 0.0002, DP: 0.1,
EP: 50, HD: 512, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.5,
EP: 50, HD: 256, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.2,
EP: 50, HD: 256, #L: 2, BS: 5000

Sampling | ApES [51]

LR: 0.001, WD: 0.0002, DP: 0.1,
EP: 50, HD: 512, #L: 2, BS: 5000

LR: 0.01, WD: 0.0001 DP: 0.2,
EP: 50, HD: 512, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.2,
EP: 30, HD: 256, #L: 2, BS: 5000

ClusterGCN [6]

LR: 0.001, WD: 0.0002, DP: 0.2,
EP: 30, HD: 256, #L: 2, BS: 5000

LR: 0.0001, WD: 0.0 DP: 0.5,
EP: 50, HD: 256, #L: 4, BS: 2000

LR: 0.001, WD: 0.0001 DP: 0.2,
EP: 40, HD: 128, #L: 4, BS: 2000

GraphSAINT [45]

LR: 0.001, WD: 0.0004, DP: 0.2,
EP: 50, HD: 512, #L: 4, BS: 5000

LR: 0.01, WD: 0.0002 DP: 0.7,
EP: 30, HD: 128, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.2,
EP: 40, HD: 128, #L: 2, BS: 5000

SGC [40]

LR: 0.01, WD: 0.0002,
EP: 100, #L:2, DP: 0.5

LR: 0.01, WD: 0.0001,
EP: 50, #L:2, DP: 0.1

LR: 0.001, WD: 0.0001,
EP: 500, #L:8, DP: 0.1

SIGN [9]
Decoupling

LR: 0.001, WD: 0.0002,
EP: 100, HD:256, #L:4, DP: 0.2

LR: 0.01, WD: 0.0002,
EP: 50, HD: 512, #L.:8, DP: 0.7

LR: 0.01, WD: 0.0001,
EP: 500, HD:256, #L:4, DP: 0.2

SAGN [33]

LR: 0.01, WD: 0.0001,
EP: 20, HD:64, #L:4, DP: 0.7

LR: 0.001, WD: 0.0002,
EP: 50, HD: 256, #L:2, DP: 0.5

LR: 0.001, WD: 0.0,
EP: 500, HD:512, #L:4, DP: 0.5

LP [17, 49]

DT: residual, #Prop: 20, AR: 0.9,

DT: residual, #Prop: 50, AR: 0.9,

DT: residual, #Prop: 20, AR: 0.9,

Adj: D™Y/2AD™1/2 AS: True, #ML:2 Adj: D™1A, AS: True, #ML:2 Adj: D7'A, AS: True, #ML:3

A3 ADDITIONAL IMPLEMENTATION DETAILS

Here we provide the details of implementation and hyperparameters for the throughput and memory usage experiments. Regarding the
implementation, we evaluate the hardware throughput based on Chen et al. [3]. For the activation memory, we measure it based on
torch.cuda.memory_allocated.

Regarding the hyperparameter setting in the throughput and memory usage measurement, we set the hidden dimension to 128 across
different models and datasets. We control the number of nodes whose embedding requires gradients roughly equals 5,000 across different
models and datasets. Thus, our method is fair in the sense that we control the number of active nodes per batch is the same for different
methods. We note that for graph-wise sampling based methods (e.g., ClusterGCN, GraphSAINT), the number of nodes whose embedding
requires gradients equals the number of nodes retained in the GPU memory. However, for other sampling-based methods (e.g., GraphSAGE,
FastGCN), they need to gather the neighbor embeddings to update the node embedding in current batch. These embeddings of nodes that are
outside the current batch do not require gradients. We also want to clarify that the hyperparameter “batch_size” in our script has different
meaning for different methods. For example, for precomputing methods, a 5,000 “batch_size” means each mini-batch contains 5,000 input
samples (i.e., nodes). For GraphSAINT, “batch_size” means the number of roots in the random walk sampler. Thus, the number of nodes in
each mini-batch roughly contains “batch_size” X “walk_length”.

	Abstract
	1 Introduction
	2 Formulations
	2.1 Sampling-based Methods
	2.2 Decoupling-based Methods

	3 Benchmarking over effectiveness
	3.1 Implementation Details
	3.2 Experimental Observations

	4 Benchmarking Over Efficiency
	4.1 Experimental Observations

	References
	A1 More details of Formulations
	A1.1 Representative Graph Sampling Schemes
	A1.2 Representative Precomputing Schemes

	A2 Additional Experiment Results
	A3 Additional Implementation Details

