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ABSTRACT
Large-scale graph learning is a notoriously challenging problem in
the community of network analytics and graph neural networks
(GNNs). Due to the nature of evolving graph structures (a sparse
matrix) into the training process, vanilla message-passing-based
GNNs always failed to scale up, limited by training speed and mem-
ory occupation. Up to now, many state-of-the-art scalable GNNs
have been proposed. However, we still lack a systematic study
and fair benchmark of this reservoir to find the rationale for de-
signing scalable GNNs. To this end, we conduct a meticulous and
thorough study on large-scale graph learning from the perspective
of effectiveness and efficiency. Firstly, we uniformly formulate the
representative methods of large-scale graph training and further
establish a fair and consistent benchmark regarding effectiveness
for them by unifying the hyperparameter configuration. Secondly,
benchmarking over efficiency, we theoretically and empirically eval-
uate the time and space complexity of representative paradigms
for large-scale graph training. Best to our knowledge, we are the
first to provide a comprehensive investigation of the efficiency of
scalable GNNs, which is a key factor for the success of large-scale
graph learning. Our code is available at https://github.com/VITA-
Group/Large_Scale_GCN_Benchmarking.
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1 INTRODUCTION
The Graph Neural Networks (GNNs) have shown great prosper-
ity in recent years [13, 22, 35, 41], and have dominated a variety
of applications, including recommender systems [14, 43], social
network analysis [11, 19, 34], scientific topological structure predic-
tion (e.g. cellular function prediction [15, 50], molecular structure
prediction [16, 44], and chemical compound retrieval [36]), and
scalable point cloud segmentation [25, 39], etc. However, though
the message passing (MP) strategy ensures GNNs’ superior per-
formance, the nature of evolving massive topological structures
prevents MP-based GNNs [10, 22, 23, 26, 35, 41, 42, 48] from scaling
to industrial-grade graph applications. Specifically, as MP requires
nodes aggregating information from their neighbors, the relevant
graph structures inevitably need preservation during forward and
backward propagation, thus occupying considerable running mem-
ory and time. For example [43], training a GNN-based recommenda-
tion system over 7.5 billion items requires three days on a 16-GPU
cluster (384 GB memory in total).

To facilitate understanding, a unified formulation of MP with 𝑘
layers is formulated as follows:

𝑿 (𝑘) = 𝑨(𝑘−1)𝜎
(
𝑨(𝑘−2)𝜎

(
· · ·𝜎 (𝑨(0)𝑿 (0)𝑾 (0) ) · · ·

)
𝑾 (𝑘−2)

)
𝑾 (𝑘−1) , (1)

where𝜎 is an activation function (e.g. ReLU) and𝑨(𝑖) is theweighted
adjacency matrix at 𝑖-th layer. As in Equ. 1, the key bottleneck of
vanilla MP lies on the computation of 𝑨(𝑖)𝑿 (𝑖) whose space com-
plexity is O(𝐸 + 𝑁 ), where 𝐸 and 𝑁 are the number of edges and
nodes. Obviously, as the number of nodes grows, it is quite chal-
lenging for a single GPU to afford such scale of consumption.

Up to now, massive efforts have been made to mitigate the afore-
mentioned issue of MP and scale up GNNs [2, 6, 9, 13, 33, 40, 45, 47,
51]. Most of them focus on approximating the iterative full-batch
MP to reduce the memory consumption for training within a single
GPU. It is worth noting that we target algorithmic scope and do
not extend to general scalability topics like distributed training
with multiple GPUs [1, 31] and quantization [30]. Briefly, previous
works encompass two branches: Sampling-based and Decoupling-
based. Namely, the former methods [2, 4, 6, 8, 13, 18, 45] perform
batch (sample)-training that utilizes sampled adjacency matrix to
approximate the full-batch MP such that the memory consumption
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is considerably reduced. The latter follows the principle of per-
forming propagation (𝑨(𝑘)𝑿 (𝑘) ) and prediction (𝑿 (𝑘)𝑾 (𝑘) ) sepa-
rately, either precomputing the propagation [1, 9, 23, 28, 40] or post-
processing with label propagation [17, 33]. Although the various
branches follow different principles, they complement each other.
Notably, the mixtures of these algorithmic components [7, 33, 46]
have achieved the state-of-the-art (SOTA) performance on presti-
gious scalable graph learning benchmarks [15]. Despite the pros-
perity of scalable GNNs, there are still plights under-explored: con-
sisting of a large amount of techniques, we lack a systematic study
of the reservoir from the perspective of effectiveness and efficiency,
without which it is unachievable to tell the rationale of the design-
ing philosophy for large-scale graph learning in practice.

PresentWork. To this end, from the perspective of effectiveness, we
first establish a fair benchmark and provide a systematic study for
large-scale graph training for both Sampling-based methods (§ 2.1)
and Decoupling-based methods (§ 2.2). For each branch, we conduct
a thorough investigation on the design strategy and implementa-
tion details of typical methods. Then, we carefully examine the
sensitive hyperparameters and unify them in one "sweet point"
set by a linear greedy search, i.e., iteratively searching the optimal
value for a hyperparameter while fixing the others. For all selected
methods, the hyperparameter search was performed on representa-
tive datasets of different scales, varying from about 80, 000 nodes to
2, 400, 000, including Flickr [45], Reddit [13], and ogb-products [15].
This step is a crucial precondition on our way to the ultimate as the
configuration inconsistency significantly prohibits a fair compari-
son as well as the following analysis. Nevertheless, this burdensome
work was overlooked by previous works. In addition, from the point
of efficiency — a pivotal criterion of large-scale graph learning —
we theoretically and empirically evaluate the time and space com-
plexity of representative methods. Best to our knowledge, we are
the first to provide a comprehensive benchmark of scalable GNNs
regarding speed and memory usage.

2 FORMULATIONS
2.1 Sampling-based Methods
Given the formulation of Equ. 1, sampling-based paradigm seeks
the optimal way to perform batch-training. Each batch will meet
the memory constraint of a single GPU for message passing, i.e.
𝑨(𝑘)𝑿 (𝑘) , where 𝑨 is the adjacency matrix for the 𝑘-th layer sam-
pled from the full graph. For clarity and completeness, we restate
the unified formulation of sampling-based methods as follows:

𝑿 (𝑘)
B0

= 𝑨(𝑘−1)
B1

𝜎

(
𝑨(𝑘−2)

B2
𝜎
(
· · ·𝜎 (𝑨(0)

B𝑘
𝑿 (0)
B𝑘

𝑾 (0) ) · · ·
)
𝑾 (𝑘−2)

)
𝑾 (𝑘−1) , (2)

where B𝑖 is the set of sampled nodes for the 𝑖-th layer. The key dif-
ference among sampling-based methods is how {B0, . . . ,B𝑘−1,B𝑘 }
are sampled. Given a large-scale graph G = (V, E), they generally
encompass three paradigms:

2.1.1 Node-wise Sampling.

B𝑖+1 =
⋃
𝑣∈B𝑖

{𝑢 | 𝑢 ∼ 𝑄 · PN(𝑣) } (3)

P is a sampling distribution; N(𝑣) is the sampling space, i.e., the
1-hop neighbors of 𝑣 ; and 𝑄 denotes the number of samples. At

the very beginning, B0 is uniformly sampled from the entire graph.
Typically, P is implemented as the uniform distribution in Graph-
SAGE [13]. Generally, the node-wise sampling usually suffers from
the "Node Explosion" problem. Namely, the number of nodes grows
exponentially with layers, causing significant memory overhead.
Please find detailed analysis for its time and space complexity in
§ 4.

2.1.2 Layer-wise Sampling.

B𝑖+1 = {𝑢 | 𝑢 ∼ 𝑄 · PN(B𝑖 ) } (4)

N(B𝑖 ) =
⋃
𝑣∈B𝑖

N(𝑣) denotes the 1-hop neighbors of all nodes
in B𝑖 . In FastGCN [2], the sampling distribution P is designed
regarding the node degree, where the probability for node𝑢 of being
sampled is 𝑝 (𝑢) ∝ ||�̂�(𝑢, :) | |2. More recently, based on FastGCN,
Zou et al. [51] propose LADIES that extends the sampling space
from N(B𝑖 ) to N(B𝑖 ) ∪ B𝑖 by adding self-loops. Notably, layer-
wise sampling mitigates the “Neighbor Explosion” problem by fixing
the sampled nodes to 𝑄 , but potentially suffers from the linking
sparsity [6, 45] that prevents it from achieving SOTA performance.

2.1.3 Subgraph-wise Sampling.

B𝑘 = B𝑘−1 = · · · = B0 = {𝑢 | 𝑢 ∼ 𝑄 · PG} (5)

For one epoch, all layers share the same subgraph that is derived
from the entire graph G based on a specific sampling strategy PG .
The sampling strategy have two paradigms: (𝑖) GraphSAINT [45]
that samples a subset of nodes based on sampling distribution
P and then induces the corresponding subgraph as a batch; (𝑖𝑖)
ClusterGCN [6] that first partitions the entire graph into clusters
based on the topological structure and then select several clusters
to form a batch. We summarize representative sampling strategies
in appendix A1.1.

2.2 Decoupling-based Methods
In conventional GNNs, message passing plays a computationally
expensive and memory-consuming part. Training such GNNs on
large-scale datasets with message passing for every pass is no more
plausible. Therefore, we summarize another line of scalable GNNs
which decouple the feature aggregation and transformation opera-
tions to avoid this operation. There are two typical ways to decouple
these two operations: (𝑖) pre-processing and (𝑖𝑖) post-processing.

2.2.1 Pre-processing: MP precomputating. Recalling Equ. 1, with-
out loss of generalization, we assume that 𝑨(𝑘−1) = 𝑨(𝑘−2) =

· · ·𝑨(0) = 𝑨, i.e. the topological structure for the entire graph re-
mains the same during forward propagation, meeting most of the
cases. To decouple the two operations, message passing (𝑨𝑿 ) and
feature transformation (𝑿𝑾 ), we can first precompute the propa-
gated node representations and then train a neural network for the
downstream task based on these fused representations:

𝑿𝑘 = 𝑨𝑘𝑿 , �̄� = 𝜌 (𝑿 ,𝑿1, · · · ,𝑿𝑘 ), 𝒀 = 𝑓\ (�̄� ), (6)

where 𝑿𝑘 can be regarded as the node representation aggregating
𝑘-hop neighborhood information, 𝐾 is the largest propagation hop,
𝜌 (·) is a function that combines the aggregated features from dif-
ferent hops, 𝑓\ (·) is a feature mapping function parameterized by
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Figure 1: The greedy hyperparameter searching results for representative large-scale graph training methods.

𝜽 . We summarize three existing pre-computing schemes [9, 33, 40]
in appendix A1.2

2.2.2 Post-processing: Label Propagation. The label propagation
algorithm [12, 17, 20, 29, 37, 38, 49] diffuse labels in the graph and
make predictions based on the diffused labels. It is a classical family
of graph algorithms for transductive learning, where the nodes for
testing are used in the training procedure. The label propagation
can be written in a unified form as follows:

𝒀 (𝑘+1) = 𝛼𝑨𝒀 (𝑘) + (1 − 𝛼)𝑮 . (7)

The diffusion procedure iterates the formula above with 𝑘 for mul-
tiple times. It requires two sets of inputs: 1) the stack of the initial
embedding of all nodes, denoted as 𝒀 (0) ∈ R𝑁×𝑑 ; 2) the diffusion
source embedding, denoted as 𝑮 ∈ R𝑁×𝑑 that propagate them-
selves across the edges in the graph. For the two methods in our
benchmarks, Huang et al. [17] uses residual error correlation and
is denoted as residual, and Zhu [49] set zero embeddings on test set
and is denoted as zeors.

3 BENCHMARKING OVER EFFECTIVENESS
3.1 Implementation Details
We test numerous large-scale graph training methods with a greedy
hyperparameter (HP) search to find their sweet point and the best
performance for a fair comparison. The search space is defined in
Table 1. Particularly, for label propagation, we select two represen-
tative algorithms: Huang et al. [17], the residual diffusion type, and
Zhu [49], the zeros type. The number of propagation is the maxi-
mum iteration 𝑘 . The aggregation ratio is 𝛼 as in Equ. 7, and the
number of MLP layers is the number of MLP layers that precedes
the label propagation module following Huang et al. [17].

Limited by space, we select five representative approaches that
covers all branches as we introduced, including GraphSAGE [13],
LADIES [51], ClusterGCN [6], SAGN [33], and C&S [17]. We illus-
trate the selected results in Fig. 1 and place the other approaches’
results in Fig. A2. For each subplot of Fig. 1 and Fig. A2, from left to
right, each column denotes the searching results for one HP. Once
one HP was searched, its value will be fixed to the best results for

the rest HP searching. Iteratively, we obtain the best performance
at the last column. For convenience and clarity, we list the searched
optimal hyperparameter settings of all test methods in Table A4.

Table 1: The search space of hyperparameters for sampling
based methods.

Category Hyperparameter (Abbr.) Candidates

Sampling &
Precomputing

Learning rate (LR) {1𝑒 − 2∗, 1𝑒 − 3, 1𝑒 − 4}
Weight Decay (WD) {1𝑒 − 4∗, 2𝑒 − 4, 4𝑒 − 4}
Dropout Rate (DP) {0.1, 0.2∗, 0.5, 0.7}
Training Epochs𝑏 (#E) {20, 30, 40, 50∗}
Hidden Dimension (HD) 128∗, 256, 512
# layers (#L) {2∗, 4, 6}
Batch size𝑎 (BS) {1000∗, 2000, 5000}

LP

Diffusion Type (DT) { residual∗, zeros }
# Propagations (#Prop) { 2, 20∗, 50 }
Aggregation Ratio (AR) { 0.5, 0.75∗, 0.9, 0.99 }
Adj. Norm (Adj.) { 𝑫−1𝑨, 𝑨𝑫−1, 𝑫−1/2𝑨𝑫−1/2∗ }
Auto Scale (AS) { True∗, False }
# MLP Layers (#ML) { 2∗, 3, 4 }

∗ marks the default value
𝑎 we do not search batch size for precomputing based methods since
they do not follow a batch-training style.
𝑏 on ogb-products, we expand the training epoch to {500, 1000, 1500}
for Precomputing-based methods to guarantee convergence.

3.2 Experimental Observations
Based the HP searching results in Fig. 1, we summarize two main ex-
perimental observations as follows. Additional detailed observation
and discussion could be found in

Obs. 1. Sampling-based methods are more sensitive to the hy-
perparameters related to MP. According to Fig. 1, in comparison
with precomputing, all sampling-based methods are non-sensitive
to hyperparameters (HPs) that are related to the feature transforma-
tion matrices, including weight decay, dropout, and hidden dimen-
sion; but particularly sensitive to the MP-related HPs, including the
number of layers and batch size. For model depth, sampling-based
methods generally achieve the sweet points when the number of
layers is confined to shallow (2 ∼ 4) and suffer from the oversmooth-
ing problem [5, 27, 32] as the GNN models go deeper. However, this
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Table 2: The memory usage of activations and the hardware throughput (higher is better). The hardware here is a RTX 3090
GPU.

Flickr Reddit ogbn-products
Act

Mem. (MB)
Throughput
(iteration/s)

Act
Mem. (MB)

Throughput
(iteration/s)

Act
Mem. (MB)

Throughput
(iteration/s)

GraphSAGE [13] 230.63 65.96 687.21 27.62 415.94 37.69
FastGCN [2] 19.77 226.93 22.53 87.94 11.54 93.05
Ladies [51] 33.26 195.34 43.21 116.46 20.33 93.47
ClusterGCN [6] 18.45 171.46 20.84 79.91 10.62 156.01
GraphSAINT [45] 16.51 151.77 21.25 70.68 10.95 143.51
SGC [40] 0.01 115.02 0.02 89.91 0.01 267.31
SIGN [9] 16.99 96.20 16.38 75.33 16.21 208.52
SAGN [33] 72.94 55.28 72.37 43.45 71.81 80.04

issue is moderately mitigated in decoupling-based methods as the
model depth does not align with the number of MP hop.

Obs. 2. Datasets of different scales are dominated by different
branches. As show in Fig. 1, C&S (label propagation) outperforms
the full-batch training (GraphSAGE as introduced in Obs. 2) on
the largest dataset ogb-products by a large margin of 4.5%. In con-
trast, GraphSAGE significantly outperforms the other methods on
the smallest dataset Flickr. Remarkably, our searched results for
GraphSAGE and LP on ogb-products also reached better perfor-
mance, compared with the ones on the OGB leaderboard 1. Besides,
our searched results for GraphSAGE on Flickr also reach the new
SOTA performance 53.63%. Noticing that GraphSAGE encounters
the out-of-memory (OOM) runtime error with increasing depth,
the observation partially indicates that, limited by model depth and
neighbor explosion problem, sampling-based methods is possibly
not powerful for extreme large-scale graphs to learn expressive
representations.

4 BENCHMARKING OVER EFFICIENCY
In this section, we present another benchmark regarding the effi-
ciency of scalable graph training methods. Firstly, we briefly sum-
marize a general complexity analysis in Table 3. For sampling-
based methods, we note that the time complexity is for training
GNNs by iterating over the whole graph. The time complexity
O(𝐿 | |𝑨| |0𝐷 + 𝐿𝑁𝐷2) consists of two parts. The first part 𝐿 | |𝑨| |0𝐷
is from the Sparse-Dense Matrix Multiplication,i.e., 𝑨𝑿 . The sec-
ond part 𝐿𝑁𝐷2 is from the normal Dense-Dense Matrix Multipli-
cation, i.e., (𝑨𝑿 )𝑾 . Regarding the space complexity, we need to
store the activations of each layer in memory, which has a O(𝑏𝐿𝐷)
space complexity. Note that we ignore the memory usage of model
weights and the optimizer here since they are negligible compared
to the activations. For decoupling-based methods, the training para-
digm is simplified as MLPs, and thus the complexity is the same as
the traditional mini-batch training. We do not include label propa-
gation in our analysis since it can be trained totally on CPUs. The
hyperparameter settings and other implementation details for this
part are included in Appendix. A3.

1https://ogb.stanford.edu/docs/leader_nodeprop/

Table 3: The time and space complexity for training GNNs
with sampling-based and decoupling-based methods, where
𝑏 is the averaged number of nodes in the sampled subgraph
and 𝑟 is the averaged number of neighbors of each node. Here
we do not consider the complexity of pre-processing sice it
can be done in CPUs.

Category Time Complexity Space Complexity

Node-wise Sampling [13] O(𝑟𝐿𝑁𝐷2) O(𝑏𝑟𝐿𝐷)
Layer-wise Sampling [9, 51] O(𝑟𝐿𝑁𝐷2) O(𝑏𝑟𝐿𝐷)
Subgraph-wise Sampling [6, 45] O(𝐿 | |𝑨| |0𝐷 + 𝐿𝑁𝐷2) O(𝑏𝐿𝐷)
Precomputing [9, 33, 40] O(𝐿𝑁𝐷2) O(𝑏𝐿𝐷)

4.1 Experimental Observations
Here we report the hardware throughput and activation usage in
Table 2. We summarize three main observations.

Obs. 3. GraphSAGE is significantly slower and occupies more
memory compared to other baselines. This is partially because
of the large neighbor sampling threshold we set and inherently
owing to its neighborhood explosion. Namely, to compute the loss
for a single node, it requires the neighbors’ embeddings at the
down-streaming layer recursively. Please refer to § 2.1.1 for details.

Obs. 4. counter-intuitively, SGC does not occupy any activation
memory. As shown in Table 2, SGC only occupies about 0.01 MB
actual memory during training. This is because for SGC, it only
has one linear layer and the activation is exactly the input feature
matrix, which has been stored in memory. Thus, it is not accounted
towards the activation memory.

Obs. 5. In general, the speed of decoupling-based methods is
comparable to sampling-based methods. Particularly, sampling-
based methods have higher throughputs on Flickr, benefiting from
batch training. However, as the scale grows, precomputing-based
methods generally outperform. This is because they avoid comput-
ing MP on CPUs, thus significantly saving time.
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A1 MORE DETAILS OF FORMULATIONS
A1.1 Representative Graph Sampling Schemes
★ Node Sampler [2, 45]: P(𝑢) = | |𝑨:,𝑢 | |2, where all nodes are sampled independently based on the normalized distribution of P. This
sampling strategy is logically equivalent to layer-wise sampling [2].
★ Edge Sampler [45]: P(𝑢, 𝑣) = 1

𝑑𝑒𝑔 (𝑢) + 1
𝑑𝑒𝑔 (𝑣) , where all edges are sampled independently based the edge distribution above. In our

implementation, we utilize the sampled nodes (once contained in the sampled edges) to induce the subgraph as input, which should include
more edges to help boost the performance.
★Random Walk Sampler [24, 45]: Here, we first sample a subset of root nodes uniformly, based on which we perform a random walk at a
certain length to obtain the subgraph as a batch.
★Graph Partitioner [6, 21]: We first partition the entire graph into clusters with graph clustering algorithms and then select multiple
clusters to form a batch.

A1.2 Representative Precomputing Schemes
★ SGC [40]: SGC simply keeps aggregating neighborhood information for 𝐾 times and feed the resultant features to a full-connected layer.
We can formulate this scheme by letting 𝜌 (·) select the last element 𝑿𝐾 and 𝑓\ (·) be a linear layer with readout activation: 𝒀 = 𝜎 (𝑿𝐾𝚯).
★ SIGN [9]: SIGN concatenates features from different hops and then fuse them as the final node representation via a linear layer. To be
more specific, 𝜌 (·) is defined as �̄� =

[
𝑿 𝑿1 · · · 𝑿𝐾

]
𝛀, and 𝑓\ (·) is defined as a linear readout layer 𝒀 = 𝜎 (�̄�𝚯).

★ SAGN [33]: SAGN adopts attention mechanism to combine feature representations from 𝐾 hops: �̄� =
∑𝐾
𝑘=1 𝑻

𝑘𝑿𝑘 , where 𝑻𝑘 is a diagonal
matrix whose diagonal corresponds to the attention weight for each node of 𝑘-hop information. The attention weight for 𝑖-th node is
calculated by𝑇𝑘

𝑖
= softmax𝐾 (LeakyReLU(𝒖𝑇𝑿𝑖 + 𝒗𝑇𝑿𝑘𝑗 )), where the subscripts slices the data matrices along the row. The feature mapping

function is selected as an MLP block with a skip connection to initial features: 𝒀 = MLP\ (�̄� + 𝑿𝚯𝑟 ).

A2 ADDITIONAL EXPERIMENT RESULTS
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Figure A2: More greedy hyperparameter searching results for representative large-scale graph training methods, including
FastGCN [2], GraphSAINT [45], SGC [40], SIGN [9].

We provide the searched optimal hyperparameters for all tested methods in Table A4 and show additional HP searching results in Fig. A2.
Given Fig. 1 and Fig. A2, we provide an additional observation as follows.
Obs. 6. Sampling-based methods’ performance is positively correlated with the training batch size. According to the results of the
last column of all sampling-based methods, the performance of the layer-wise and subgraph-wise sampling methods is roughly proportional
to the batch size. Expectedly, the model performance could further increase as the batch size grows till the upper bound of full-batch training
because more links can be preserved. Particularly, in our experiment, we set the number of sampled neighbors (𝑄 in Equ. 3) of node-wise
sampling to a large threshold such that the performance of GraphSAGE can be regarded as full-batch training’s. It can be easily found that the
performance of sampling-based methods is inferior to full-batching training (GraphSAGE), further proving our conjecture that the missing
links by sampling are non-trivial.
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Table A4: The searched optimal hyperparameters for all tested methods

Category Methods Datasets

Flickr Reddit ogbn-products

Sampling

GraphSAGE [13] LR: 0.0001, WD: 0.0001, DP: 0.5,
EP: 50, HD: 512, #L: 4, BS: 1000

LR: 0.0001, WD: 0.0 DP: 0.2,
EP: 50, HD: 512, #L: 4, BS: 1000

LR: 0.001, WD: 0.0 DP: 0.5,
EP: 50, HD: 512, #L: 4, BS: 1000

FastGCN [2] LR: 0.001, WD: 0.0002, DP: 0.1,
EP: 50, HD: 512, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.5,
EP: 50, HD: 256, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.2,
EP: 50, HD: 256, #L: 2, BS: 5000

LADIES [51] LR: 0.001, WD: 0.0002, DP: 0.1,
EP: 50, HD: 512, #L: 2, BS: 5000

LR: 0.01, WD: 0.0001 DP: 0.2,
EP: 50, HD: 512, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.2,
EP: 30, HD: 256, #L: 2, BS: 5000

ClusterGCN [6] LR: 0.001, WD: 0.0002, DP: 0.2,
EP: 30, HD: 256, #L: 2, BS: 5000

LR: 0.0001, WD: 0.0 DP: 0.5,
EP: 50, HD: 256, #L: 4, BS: 2000

LR: 0.001, WD: 0.0001 DP: 0.2,
EP: 40, HD: 128, #L: 4, BS: 2000

GraphSAINT [45] LR: 0.001, WD: 0.0004, DP: 0.2,
EP: 50, HD: 512, #L: 4, BS: 5000

LR: 0.01, WD: 0.0002 DP: 0.7,
EP: 30, HD: 128, #L: 2, BS: 5000

LR: 0.01, WD: 0.0 DP: 0.2,
EP: 40, HD: 128, #L: 2, BS: 5000

Decoupling

SGC [40] LR: 0.01, WD: 0.0002,
EP: 100, #L:2, DP: 0.5

LR: 0.01, WD: 0.0001,
EP: 50, #L:2, DP: 0.1

LR: 0.001, WD: 0.0001,
EP: 500, #L:8, DP: 0.1

SIGN [9] LR: 0.001, WD: 0.0002,
EP: 100, HD:256, #L:4, DP: 0.2

LR: 0.01, WD: 0.0002,
EP: 50, HD: 512, #L:8, DP: 0.7

LR: 0.01, WD: 0.0001,
EP: 500, HD:256, #L:4, DP: 0.2

SAGN [33] LR: 0.01, WD: 0.0001,
EP: 20, HD:64, #L:4, DP: 0.7

LR: 0.001, WD: 0.0002,
EP: 50, HD: 256, #L:2, DP: 0.5

LR: 0.001, WD: 0.0,
EP: 500, HD:512, #L:4, DP: 0.5

LP [17, 49]
DT: residual, #Prop: 20, AR: 0.9,

Adj: 𝐷−1/2𝐴𝐷−1/2, AS: True, #ML:2
DT: residual, #Prop: 50, AR: 0.9,
Adj: 𝐷−1𝐴, AS: True, #ML:2

DT: residual, #Prop: 20, AR: 0.9,
Adj: 𝐷−1𝐴, AS: True, #ML:3

A3 ADDITIONAL IMPLEMENTATION DETAILS
Here we provide the details of implementation and hyperparameters for the throughput and memory usage experiments. Regarding the
implementation, we evaluate the hardware throughput based on Chen et al. [3]. For the activation memory, we measure it based on
torch.cuda.memory_allocated.

Regarding the hyperparameter setting in the throughput and memory usage measurement, we set the hidden dimension to 128 across
different models and datasets. We control the number of nodes whose embedding requires gradients roughly equals 5,000 across different
models and datasets. Thus, our method is fair in the sense that we control the number of active nodes per batch is the same for different
methods. We note that for graph-wise sampling based methods (e.g., ClusterGCN, GraphSAINT), the number of nodes whose embedding
requires gradients equals the number of nodes retained in the GPU memory. However, for other sampling-based methods (e.g., GraphSAGE,
FastGCN), they need to gather the neighbor embeddings to update the node embedding in current batch. These embeddings of nodes that are
outside the current batch do not require gradients. We also want to clarify that the hyperparameter “batch_size” in our script has different
meaning for different methods. For example, for precomputing methods, a 5,000 “batch_size” means each mini-batch contains 5,000 input
samples (i.e., nodes). For GraphSAINT, “batch_size” means the number of roots in the random walk sampler. Thus, the number of nodes in
each mini-batch roughly contains “batch_size” × “walk_length”.
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