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ABSTRACT

Despite advances in GNNs, only a small number of datasets are
used to evaluate new models. This continued reliance on a handful
of datasets provides minimal insight into the performance differ-
ences between models, and is especially challenging for indus-
trial practitioners who are likely to have datasets which are very
different from academic benchmarks. In this work we introduce
GraphWorld, a novel methodology for benchmarking GNN models
on an arbitrarily-diverse population of synthetic graphs for any
GNN task. We present insights from GraphWorld experiments re-
garding the performance characteristics of eleven GNN models
over millions of benchmark datasets. Using GraphWorld, we also
are able to study in-detail the relationship between graph properties
and task performance metrics, which is nearly impossible with the
classic collection of real-world benchmarks.

1 INTRODUCTION

Graph Neural Networks (GNNs) have extended the benefits of deep
learning to the non-Euclidean domain, allowing for standardized
and re-usable machine learning approaches to problems that in-
volve relational (graph-structured) data [33]. GNNs now admit an
extremely wide range of architectures and possible tasks, including
node classification, whole-graph classification, and link prediction
[7]. With this growth has come increased calls for proper GNN ex-
perimental design [26, 35], refreshed benchmark datasets [14], and
fair comparisons of GNN models in reproducible settings [10, 20].

Despite the proliferation of new GNN models, only a few hand-
picked benchmark datasets are currently used to evaluate them
[14]. The limited scope of these datasets makes it hard for practi-
tioners to infer which models will generalize well. Relatedly, new
architectures are proposed only when they beat existing methods
on these datasets, which can cause architectural overfitting [22, 24].

In this work, we introduce GraphWorld, the first tunable, scal-
able, and reproducible method for analyzing the performance of
GNN models on a statistically diverse set of benchmark datasets
for any given GNN task (i.e. all {un/semi}supervised node/graph
problems [33]). Using arbitrarily-tunable random graph generation
models, GraphWorld allows comparisons between GNN models
and architectures that are not possible with standard benchmarks.
As seen in Figure 2, GNN models change sharply in performance
ranking when tested on GraphWorld datasets that are distant in
graph property space from standard real-world datasets.

In this short paper we provide overviews of the contributions
from the longer version [23]:

(1) Problem Formulation. We pose the question: how can we
measure GNN model performance across graph datasets with
high statistical variance? Modern benchmark datasets, however
well-maintained, can be limited in scope, and can be computa-
tionally inaccessible to the average researcher.

(a) Unbalanced clusters, 7/g = (b) Features PCA, center dis-
25.0 tance = 0.05

(d) Features PCA, center dis-
tance = 3.0

(c) Balanced clusters, #/g = 5.0

Figure 1: GraphWorld node classification datasets from the
SBM with Gaussian node features. The datasets above dif-
fer in graph signal-to-noise ratio (p/g) and the feature center
cluster distance.

(2) Methodology. We provide GraphWorld, a graph sampling and
GNN training procedure which is capable of testing state-of-
the-art GNNs on task datasets beyond the scope of any existing
benchmarks.

Insights. We use GraphWorld to conduct large-scale experi-
mental study on over 1 million graph datasets for each of three
GNN tasks — node classification, link prediction, and graph prop-
erty prediction. We provide a novel method to explore the GNN
model performance across all locations in the graph worlds that
we generate.
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2 GNN EXPERIMENTS: PAST AND FUTURE

Progress on GNN architectures is recorded, in large part, by com-
paring the empirical performance of proposed and existing architec-
tures on particular tasks, such as node classification on the CORA
dataset. In general, such experiments are used to arrive at some
insights about how new architectures will perform in realistic sce-
narios. However, most studies feature 1 task and <5 datasets (graph-
classification datasets such as [21] are considered one dataset),
which greatly limits the confidence in the ability of any particular
paper’s results to generalize.



In this paper, we question whether or not this status quo of GNN
evaluation is enough to measure progress in the field. Relying only
on a handful of graph datasets over time could be detrimental to
the field, for the following three reasons:

Inadequate generalization. Each curated graph dataset repre-
sents just one point in the space of all possible datasets that can be
associated with the particular GNN task at-hand. The graph(s) in a
dataset may have properties that favor some GNN models over oth-
ers, whereas yet-unseen graphs will have different characteristics
that could reverse any insights made from the singular trial.

Incremental overfitting. As it is in many machine learning
subfields, GNN task datasets are successively re-used across papers,
to accurately measure incremental improvements of new architec-
tures. However, this can cause overfitting of new architectures to
the datasets, as observed in NLP [22] and computer vision [24]. This
effect (and the related “inadequate generalization" effect described
above) is illustrated in Fig. 2.

Un-scalable development. In recent years, there has been a
particular focus on scalability in GNN research and benchmarks
[14]. While this is important for investigating GNN capacity, it is
not obvious that giant graphs are needed to test GNN accuracy or
scientific usefulness. As the field’s benchmark graphs become ever-
larger, standardized graph datasets for testing GNN expressiveness
become less accessible to the average researcher without access to
institution-scale resources.

Possibly due to the existence of well-studied random graph mod-
els such as the Stochastic Block Model [2, 15], there has been a very
recent trend of featuring small synthetic datasets in GNN research,
to tease apart model differences that would be harder to observe
on standard datasets [8, 9, 25, 29, 30, 36]. However, to date, there
is no generalized methodology for producing synthetic, tunable
populations of GNN task datasets at-scale, nor a concept of how to
analyze GNN performance on such populations. This is the main
problem we aim to solve with GraphWorld.

3 GRAPHWORLD

To address the problems above, we introduce GraphWor1d: a trivially-
parallel method for generating diverse populations of GNN bench-
marks using random graphs and extracting marginal population-
level insights about GNN architectures.

Graph Generation. GraphWor1ld simulates GNN datasets using
random graphs and feature generators. Each GraphWorld dataset
comes from a probability distribution P (71, 72,...) on D = G X
F x L, where G is a graph space, ¥ is a feature space, and L is
a label space. Each worker in a GraphWorld pipeline generates a
single realization D € D by sampling a generator parameter set
(71, 72, . . .), and then sampling a single dataset from P.

For example, we can generate node classification datasets with the
Stochastic Block Model (SBM) [c.f. 2]: cluster assignments double
as class labels, and node features F € F are drawn from a Normal
mixture. The class sizes, feature cluster centers, edge homogene-
ity, and many more dataset properties are tunable with the SBM
parameters, e.g. Fig. 1. GraphWorld samples all parameters from a
wide range, producing a diverse sample of benchmarks.

Training, Testing, and Evaluation. The GraphWorld method
simulates a pre-specified number of GNN test datasets D1, Da, ... €
D, and then trains and tests an arbitrary list of GNN models on
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each dataset. Similarly to the test data distributions, the hyperpa-
rameters of GNN model m (for a particular dataset) is determined by
a sample or specification (A1, hma, - ..) € Hm = Hpmi X Hpz X .. ..
The complete set of inputs to the GraphWorld method are (1) a list
of models to test; (2) a task formulation P (71, 72, . . .); (3) a task met-
ric; (4) N: number of datasets. With these inputs, the GraphWorld
system is trivially parallel over N samples.

Efficient analysis. A key aspect of GraphWorld is the ability
to analyze the response of GNN models to the task generator pa-
rameters described previously. However, not all configurations
(71, 72, . ..) in parameter space will provide equivalent insights. As
a trivial example, extremely small values of 7; = number of ver-
tices (such as 2 or 3) will clearly not be useful to exploring other
parameters, like edge density, or the skewness of the degree distri-
bution, since GNN models will either perform poorly or perfectly
on trivially-sized graphs regardless of other parameters.

We provide a methodology to mine a large (random) sample
of GraphWorld generator configurations for the most “affective”
configuration, meaning that deviations from that configuration
affect GNN model performance most strongly. Assume we have
generated a graph world for a given task T with generator parameter
space II, and at each location k at the graph world we have a
sampled configuration IT;. € II and an average GNN test metric
zj.. Conceptually, a sampled configuration I1 = (mmy, 7o, .. .) is most
affective if for every m; € II, changing the value of any other
parameter 7; produces variance in the test metrics of GNN models.

To find such a configuration, we perform marginal optimization
on the space of parameters I1. Using the samples {(II;, zx)} on an
initial run of a GraphWorld pipeline, we find a (locally) optimal
setting for each 7; in the following manner. We first bin each di-
mension of IT into a fixed number of quantile bins. Then for each
quantized value 7; = x, we compute the average F statistic [28]
between the other parameter values 7; and the test metric z (on
graph world locations where 7; = x). We then set 7; to the x value
that produced the highest F statistic. This produces an optimal gen-
erator configuration from which we can efficiently sample a smaller
but still-interesting graph world. In Section 4 we describe how we
apply this technique to GraphWorld experiments.

4 EXPERIMENTAL DESIGN

In this section, we introduce novel experimental design for the
GraphWorld method, showing how to efficiently sample a useful
part of any graph world. We describe three tasks — node classifi-
cation, graph classification, and link prediction — and how they
are generated in various graph worlds. We also list the GNN mod-
els tested with the GraphWorld applications, and present novel
GraphWorld modes of hyperparameter tuning and inference.

4.1 Methods

We experiment on 11 representative GNNs and 3 baselines to illus-
trate the strengths of our proposed approach: ARMA [3], APPNP
[18], FILM [5], GAT [31], GATv2 [6], GCN [17], GIN [34], Graph-
SAGE [13], SGC [32], SuperGAT [16], and Transformer [27] as
GNN models; Linear Regression (graph property prediction only),
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Multi-Layer Perceptron, Personalized PageRank [4], Link pre-
diction heuristics [20] for baselines. By design, it is trivial to add
additional models into GraphWorld.

4.2 Tasks

Here we describe three tasks that will be explored with three sepa-
rate GraphWorld pipelines. In Section 5 we show results from each
task run in each of the hyperparameter tuning modes described in
Appendix B.2.

4.2.1 Node Classification (NC). As aforementioned, we generate
NC datasets with the SBM. Cluster labels are generated from a multi-
nomial distribution, and edges are generated as Bernoulli random
variables following within-block probability p and between-block
probability g (p > g). Node features are generated from a within-
cluster multivariate Normal distribution, with unit (diagonal) co-
variance, and cluster centers are drawn from a prior multivariate
Normal. The variance of the prior controls the degree of separation
between the cluster feature centers. Other parameters and training
details are given in [23].

4.2.2  Link Prediction (LP). Again we generate SBM graphs. How-
ever, to craft a link prediction setting, we randomly split edges into
training, validation, and test sets. The task is to predict the "unseen"
edges in the test set, which we evaluate with the ROC-AUC metric
against randomly chosen negatives, imitating the setting in [11].

4.2.3 Graph Property Prediction (GPP). In this GraphWorld experi-
ment, we generate a dataset of small Erdés-Renyi random graphs.
The task is to infer the number of a certain motif in each test
graph. In this paper, we evaluate tailed-triangle motif counting.
We evaluate the models with scaled mean-squared-error (S-MSE):
S(yi — 9:)?/ 3 (yi — §)?, which is comparable across datasets with
different scales of motif counts. As in [8], we give a dummy unit
one-dimensional feature to each node.

5 RESULTS AND INSIGHTS

In this section, we present preliminary results from the GraphWorld
pipeline. Following the experimental design described in the pre-
vious section, we ran nine GraphWorld pipelines, one for each of
three tasks, and with all three hyperparameter optimization modes
per task (see Appendix B.2). We applied the GraphWorld F-statistic
exploration technique to Modes 2-3, sampling only one parameter
from the generator, holding the other parameters fixed at default.
All results below come from the Mode 2 pipelines.

5.0.1 Marginal Parameter Analysis. We now cover marginal pa-
rameter insights from the node classification (NC) task, leaving
results from the other two tasks discussed above for the main pa-
per [23]. Marginal parameter analysis is a unique and powerful
property of GraphWorld, allowing us to examine the average re-
sponse of GNN models to particular, explainable characteristics of
the task. Figures 2 and 3 present marginal parameter results, which
we discuss further below. We produced those plots using data from
GraphWorld Mode 2, using only samples in each plot from which
the corresponding parameter was varied.

5.0.2  Insight: GNN models switch ranks outside of standard bench-
mark space. To establish our key empirical result, as seen in the

three plots inside Figure 2, we project the GraphWorld node clas-
sification task distribution space into a 2-D plane measuring each
graph’s average degree and edge homogeneity, which is the pro-
portion of edges that connect nodes in the same class [36]. Our
first finding is that standard benchmark graphs (shown as black
points on the plot) cover only a small region of this graph space that
GraphWorld is able to cover via synthetic graph generation. This
adds to the strong overall motivation for the GraphWorld method
described in Section 2, since these statistics should (intuitively)
strongly affect graph convolutions.

On the z-axis of each plot in Figure 2, we measure the mean re-
ciprocal rank of GCN, APPNP, and FiLM (respectively) against the
other 12 models. Our second finding is that—indeed, as expected—
GNN models exhibit high ranking variance across this slice of syn-
thetic graph space. We find sharp MRR phase transitions around
0.5 edge homogeneity, and for lower values of average degree. Fur-
thermore, importantly, standard benchmark datasets mostly avoid
regions of phase transitions. This strongly suggests that standard
benchmark datasets are insufficient to produce generalizable rank-
ings of models and that there is a serious risk of overfitting to
the small number of available benchmark datasets for GNNs. We
are hopeful that more comprehensive benchmarking by the means
of GraphWorld will help the field to continue to make forward
progress.

5.0.3 Insight: GNNs respond surprisingly to graph characteristics.
Our GraphWorld experiments on the node classification tasks offer
both intuitive and counter-intuitive insights about GNN respon-
siveness to graph and node feature distributions. We make the
following observations (more in [23]):

o Number of vertices doesn’t matter. Across NC and LP tasks,
the size of the graph (number of vertices) has negligible effect on
test AUC. This suggests that, when studying GNN sensitivity to
graph characteristics like edge homogeneity, it may be sufficient
to test new GNN architectures on small graphs produced by
GraphWorld, rather than on large real-world graphs. However,
as a limitation of this study, we note that small graphs such as
those in this GraphWorld experiment cannot test GNN handling
of long-range dependencies, studied e.g. in [18] and [12].

¢ Differential sensitivity to graph and feature signal. For NC,
most models increased test AUC as the p-to-q ratio (graph clus-
ter signal) and feature-center-distance (feature cluster signal)
increased. FILM and MLP, which depend strongly on the features,
do not respond at all to pg, but are among the top-performers as
the feature signal increases.

6 CONCLUSIONS AND FUTURE WORK

The insights described in the previous section are not possible with-
out GraphWorld, which (1) has the capability to generate millions
of test datasets with diverse characteristics and (2) logs the dataset
characteristics along with test metrics for each model. More broadly,
GraphWorld addresses limitations of GNN experimentation (dis-
cussed in Section 2) via the following features:

(1) Generalizable analyses. With tunable parameters for GNN
dataset generators, GraphWorld can simulate graphs with far-
wider ranges of graph properties than currently exist in any
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Figure 2: GraphWorld uses synthetic data to elucidate fundamental differences between graph neural network convolutions.
Shown here are the relative performance results of GCN [17], APPNP [18], and FiLM [5] across 50,000 distinct node classi-
fication tasks. The x and y axes group the synthetic graphs by their structural properties, while the z-axis shows the mean
reciprocal-rank (MRR) relative to other baselines (Section 4.1). We find that standard GNN benchmark datasets (Cora, OGB,
etc.) exist in regions of the GraphWorld where model rankings do not change. GraphWorld can discover previously unexplored

graphs which reveal new insights about GNN architectures.
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Figure 3: GraphWorld node classification results (mode 2).

collection of benchmark datasets. As shown in our results (espe-
cially Figure 2), the marginal analysis of these parameters can
generate insights about GNN architectures that are unavailable
from any small collection of re-used datasets.

(2) Reproducibility without overfitting. With GraphWorld, a
researcher can test their model as easily as with any existing
collection of GNN benchmarks, but without the risk of overfit-
ting to graphs with a limited set of properties.

(3) Accessibility. As described in Appendix A, GraphWorld does
not require excessive resources, and can test many more models

at a time for lower cost than standard benchmarks. Further-
more, our experiments show that assessing GNN test perfor-
mance does not depend on having natural, society-scale graph
data. Combining these observations, we have shown that with
GraphWorld it is possible to derive new insights with less re-
sources. Thus GraphWorld can help facilitate GNN research in
smaller labs.

These characteristics make GraphWorld the perfect complement
to GNN experiments on graph datasets sourced from nature. While
performance on such natural datasets will always be of scientific
interest and essential for new research, GraphWorld can expose
when progress on them may not transfer to other datasets. More
importantly, GraphWorld can help uncover certain distributions
of graphs that have not yet been used to test GNNs, which we
hope will inspire new architecture development. At Google, we are
integrating GraphWorld with GNN experimental pipelines and unit
tests, as well as with TF-GNN [1].

One limitation of the analyses in Section 5 is that most random
graph models (including the SBM) are simple, relative to the com-
plexity of real-world data. A complementary and follow-up line
of research to our work could be the development of new random
graph models with tunable properties that target classes of GNN
architectures, or certain types of complex graph structures. For in-
stance, we may wish to design clustered graph models with tunable
numbers of certain graph motifs, or attributed graph models with
non-trivial feature correlations. GraphWorld is the perfect tool to
understand how these variations in these graph properties cause
differential responses from various GNN architectures.

Overall, GraphWorld facilitates cheap, comprehensive, and prin-
cipled investigation into the nuances of GNN model performance.
By releasing our (forthcoming) codebase and integrating GraphWorld
with TF-GNN, we hope to make GNN experimental results more
robust and transferable — helping researchers reach more reliable
conclusions when developing new architectures.
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A IMPLEMENTATION AND COST

Design goals for GraphWorld focused on accessibility, scalability
and efficiency; any researcher should be able to run GraphWorld
simulations with minimal setup, while having the system automat-
ically scale up experiments to available resources only as needed.
To this end, GraphWor1ld is implemented as a containerized Apache
Beam! pipeline allowing researchers to run a hermetic copy of
Graph World on any infrastructure i.e., a local machine, compute
cluster, or cloud framework. Experiments in this paper were run on
Google Cloud Platform (GCP) using Cloud Dataflow. Experiments
were allowed to scale up to a maximum of 1000 workers using
nl-standard-1 machines capable of sampling millions of graphs
in < 10 hours. Table 2 shows the number of virtual-CPU hours
needed to complete the nine pipelines discussed in Section 4. It is
relatively cheap to perform large-scale GNN model analyses such
as those in this paper with GraphWorld. Our node classification
experiments featured in the paper cost under $120, involving 13
models on 1M+ benchmark datasets, with no GPUs and negligible
RAM. By comparison, the experiment with real-world OGB data
from [19] involved only 3 models, only 1 Open Graph Benchmark
(OGB) dataset, 4 GPUs, and >480GB of RAM per >24 CPUs. These re-
sources would cost >$500 on modern cloud compute platforms (see
https://cloud.google.com/compute). Additionally, that OGB experi-
ment completed in >40hrs, whereas our GraphWorld experiments
took 10hrs total.

B EXPERIMENT DETAILS

In this Appendix section, we provide more details about GraphWorld
pipelines, the task dataset generators, and the model architectures.
In particular, we specify all the GraphWorld configuration elements
(see Section 3) of the node classification pipeline. We also include
tabular experiment results from each GraphWorld pipeline.

B.1 Models

In Table 1 we list hyperparameter values available to each GNN

model (and some non-GNN models) for tuning. We note that GraphWorld

experiments are focused on a comparison of the convolution layers
introduced by each model (defined by its corresponding convolution
implementation in PyTorch-geometric).

B.1.1  Graph Property Prediction. In order to generate the global
readout of the node state, we take the final layer’s activations for all

!https://beam.apache.org/
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the nodes and apply mean pooling to create a graph representation. Hyperparameter Values
This representation is then used for regressing substructure counts Learning Rate [0.01,0.001, 0.0001]
B.2 Hyperparameter Optimization Hidden Channels 14,8, 16]

Number of Layers [1.2,3,4]
GNN hyperparameter tuning is essential for understanding model Dropout [0,0.3,0.5,0.8]
performance, and is an aspect of GNN experimentation that can be o (APPNP, SGC, and PPR baseline) [0.1,0.2,0.3]
efficiently explored with GraphWorld. A GraphWorld pipeline can Iterations (APPNP and SGC) 5,10, 15]
be run in one of three hyperparameter modes: # of attention heads (GATs and Transformer) [1,2,3,4]

Mode 1 Each model m is trained and tested with a random draw
(hm1, hm2, ...) € Hpm, its hyperparameter configuration space.
Mode 2 Assume a GraphWorld pipeline has already been run in Mode

Table 1: Hyperparameter values for all models used by all
GraphWorld experiments.

1. For any model m, let H; be the i-th unique configuration
sampled (at any location in the graph world). Let D; be the
collection of GraphWorld datasets for which H; was sampled

for m. Mode 2 is to run another GraphWorld pipeline with Task Mode Samples (N) Tuning Rounds vCPU hours
the best config H;,, defined as: LP 1 le6 0 1681
H* = arg max | D;| ! Z EvalMetric(m(H;),D). (1) Lp 2 7e5 0 1,672
H; DeD; LP 3 7e3 100 1,896
Intuitively, we pick the hyperparameters that achieve the NC 1 1e6 0 1,047
best average performance across all GraphWorld samples. NC 2 7e5 0 755
Mode 3 Each model m receives a budget of t tuning rounds, and the NC 3 7e3 100 937
bpeparmas confguion shch bl bt ons e 1 e
eld-out validation set is used to compute the test metric. GPP 2 de5 0 3399
GPP 3 4e3 100 3,553

Table 2: Resource complexity for GraphWorld experiments.
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