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ABSTRACT
Link prediction is a key problem for network-structured data, at-
tracting considerable research efforts owing to its diverse applica-
tions. The current link prediction methods focus on general net-
works and are overly dependent on either the closed triangular
structure of networks or node attributes. Their performance on
sparse or highly hierarchical networks has not been well studied.
On the other hand, the available tree-like benchmark datasets are
either simulated, with limited node information, or small in scale.
To bridge this gap, we present a new benchmark dataset TeleGraph,
a highly sparse and hierarchical telecommunication network asso-
ciated with rich node attributes, for assessing and fostering the link
inference techniques. Our empirical results suggest that most of
the algorithms fail to produce satisfactory performance on a nearly
tree-like dataset, which calls for special attention when designing
or deploying the link prediction algorithm in practice.
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1 INTRODUCTION
Link prediction aims to predict whether two nodes in a network
are likely to have a link [12, 21] via the partially available topol-
ogy or/and node attributes, attracting considerable research efforts
owing to its diverse applications. According to the techniques in-
volved, the current link prediction methods can be categorized
into three classes: heuristic methods, embedding methods, and
Graph Neural Network (GNN)-based methods. Heuristic methods
infer the likelihood of links via handcrafted similarity measures
regarding the structure information [2, 12]. Embedding methods
learn free-parameter node embeddings in a transductive manner to
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Figure 1: An illustration of the access network which is the
most basic facility in the telecommunication network. It is
responsible for connecting subscribers to the immediate ser-
vice provider via base stations, transmission, and route. The
overall topology is tree-like with a distinct hierarchical lay-
out, but some local areas are grid or circular. Recovering the
missing topology between the devices enables the efficient
fault management [6], which is of importance to ensure the
stability and reliability of the network.

infer the probability if a node pair being connected [7, 11]. GNN-
based methods formulate the link prediction as the binary classifi-
cation problem in which the explicit node feature could be incor-
porated [9, 24, 26]. These techniques are typically evaluated on a
limited number of regular benchmark datasets such as collaboration
network [19] or citation networks [8]. However, many real-world
scenarios, such as protein interaction networks [20], knowledge
graphs [16], disease spreading network [4], transport networks [1],
and social networks [3], are usually sparse or hierarchical in nature,
which calls for special attentions [3, 15, 22]. On the other hand, the
current tree-like benchmark datasets are either simulated, small
in scale, or with limited node attributes, which incurs substantial
affect on the progress of related studies.

To bridge the gap and further foster the link prediction research,
we publicly release TeleGraph: a medium-sized (41,143 nodes) undi-
rected heterogeneous network (3 classes) with multiple informative
node attributes (240 types). Telecommunication networks are keys
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to supporting personal communications as well as those of busi-
nesses and other organizations in the modern era. To ensure the
stability and reliability of the large telecommunication network,
a crucial task is efficient fault management, which requires the
precise device connections enabling the engineers to analyze, lo-
cate, and recover the faults [6]. An illustration of the access layer
of a telecommunication network is given in Figure 1, where the
overall topology is tree-like but some local areas are grid or cir-
cular, and some connections between devices are missing. As a
real-world dataset associated with complex topology and multiple
node attributes and whose properties are shared by many engi-
neered transport networks [1], we believe TeleGraph creates excit-
ing opportunities for assessing and gestating both link inference
techniques and node embedding procedures.

Main contributions. The major results and contributions pre-
sented in our work can be summed up as follows:

• We release TeleGraph, a highly hierarchical and sparse dataset
which can be used to benchmark the link prediction algo-
rithms.

• We conduct a descriptive analysis of the dataset and discuss
the particular modeling challenges that the dataset poses.

• We assess the performance of existing link prediction al-
gorithms regarding to both AUC and AP, provide insights
and prescriptive guidance for industrial settings from our
observations.

2 PRELIMINARY
2.1 Notations and Problem Definition
Consider an undirected graph 𝐺 = (𝑉 , 𝐸, 𝑋 ) with node set 𝑉 , the
edge set 𝐸, and node features 𝑋 , respectively. We denote 𝐴 ∈
{0, 1}𝑁×𝑁 as the adjacency matrix of 𝐺 , i.e., the (𝑖, 𝑗)-th entry
in 𝐴 is 1 if and only if there is an edge in 𝐸 between 𝑣𝑖 and 𝑣 𝑗
(𝑣 ∈ 𝑉 ). Given network structure or/and node features, link predic-
tion methods aim to preserve/learn the similarity measures of the
node pair to infer missing links or detect the spurious links.

According to the techniques involved, the current Link prediction
algorithms can be generally classified into three main paradigms:
heuristic methods, embedding methods, and GNN-based methods.
Heuristic methods compute some heuristic node similarity scores
as the likelihood of links [12, 13], which are simple yet effective
but not applicable for diverse scenarios. Embedding methods learn
node embedding based on connections between nodes and compute
similarity scores [7, 14]. GNN-based methods infer the existence
of links by employing graph neural networks. More specifically,
Graph Auto-Encoder(GAE) or Variational GAE [9] learn node rep-
resentations through an auto-encoder framework where various
GNN architectures have been utilized as the encoders. SEAL [26, 27]
reformulated the link prediction task as the subgraph binary clas-
sification which shows apparent advantages over GAEs in most
scenarios. In Section 4, we will carry on extensive experiments to
evaluate the performance of diverse link prediction methods.

2.2 Evaluation Metrics
To test the algorithms’ performance, the edge set 𝐸 is randomly
divided into the training, validation, and test set. Two standard
metrics: area under the receiver operating characteristic curve

(AUC) [28] and Average Precision (AP) [25] are widely applied
to evaluate the link prediction measures or algorithms.

(i) AUC: Given the ranking of the non-observed links, the AUC
value can be interpreted as the probability that a randomly chosen
missing link is given a higher score than a randomly chosen nonex-
istent link. At each time we randomly pick a missing link and a
nonexistent link to compare their scores, if among 𝑛 independent
comparisons, there are 𝑛1 times the missing link having a higher
score and 𝑛2 times have the same score, the AUC value is given as:

AUC =
𝑛1 + 0.5𝑛2

𝑛
. (1)

(ii) AP: Given the ranking of the non-observed links, the preci-
sion is defined as the ratio of relevant items selected to the number
of items selected. AP measures the weighted mean of precision
achieved at each threshold regard the precision-recall curve, with
the increase in recall used as the weight:

AP =
∑︁
𝑛

(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛, (2)

where 𝑅𝑛 and 𝑃𝑛 are the recall and precision at the 𝑛th threshold.

3 THE TELECOMMUNICATION DATASET
Telecommunication networks are keys to support personal commu-
nications as well as those of businesses and other organizations in
the modern era. To ensure the stability and reliability of the large
telecommunication network, a crucial task is efficient fault man-
agement, which requires the precise device connections enabling
the engineers to analyze, locate, and recover the faults, Typically,
the network typologies are recovered by the Link Layer Discov-
ery Protocol (LLDP) via analyzing the device configuration files
recorded on the networkmanagement systems (NMSs). However, as
networks become increasingly complex, carriers need to maintain
devices from multiple vendors and diverse standards (i.e., 2/3/4/5G),
and data from different NMSs may not be associated or updated
timely. It makes device connections are hard to be inferred via
manually configuration file collection and protocol analysis. On
the other hand, the alarm logs which describe the devices’ status
and latent connections are readily and easily to access. Analogous
to a disease propagation network, alarms of the telecommunication
network show strong temporal and spatial correlations that a fault
occurring on one device triggers alarms of its own and also lead
to alarms reported on connected devices. The incomplete topology
also provides supportive information to infer the missing connec-
tions.

3.1 Dataset Description
The TeleGraph is an access layer of a metropolitan telecommunica-
tion network, which contains 41,143 vertices (devices), categorized
into 3 types: routers, transmission (e.g., microwave), and base sta-
tion (e.g. NodeB). The raw data includes the paths log and the alarms
log, in which the paths log gives how information transits through
the network. A path is an ordered list and a device may belong
to multiple paths. The alarm logs tell when and where the alarms
happened. Table 1 and Table 2 depict the examples of path and
alarm log, respectively. The collected alarm logs range from 12𝑡ℎ

to 16𝑡ℎ April 2019, with more than six million alarms categorized
into 240 types. By combing paths and associating the alarms with
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the corresponding devices, we got an attributed graph in which
the attributes information of each device (i.e., node) corresponds to
alarm logs with each alarm type and the list of alarm occurrences
of each type, sorted by time, as illustrated in Fig. 2. Readers may
refer to the work [6] for more details on the preprocessing.

Table 1: Example of paths log
Path Id Device Name Device Type Path Hop

1 Device 1 ROUTER 0
1 Device 2 MICROWAVE 1
1 Device 3 NODEB 2
2 Device 1 ROUTER 0
2 Device 4 MICROWAVE 1
2 Device 5 MICROWAVE 2
2 Device 6 NODEB 3
... ... ... ...

Table 2: Example of alarms log
Alarm Name Device Type Alarm Source Occurrence Time

Alarm 1 NODEB Device 3 2019-04-12 10:40:23
Alarm 2 MICROWAVE Device 2 2019-04-12 10:40:24
Alarm 3 MICROWAVE Device 2 2019-04-12 10:40:26
Alarm 4 ROUTE Device 1 2019-04-12 10:40:51

... ... ... ...

…

Router
Transmission
Base Station

Node attribute dictionary:
Node type :  
Router/Transmission/Base Station
Historical Alarm data: 
(Alarm type: appear time)
Alarm A:  [t1, t2, t3…]
Alarm B: [t3, t4, t5…]
…

Figure 2: The network topology (left) with alarm attributes
(right) of the TeleGraph dataset.
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Figure 3: Number of different device types

Wefirst analyze the number of each type of device, which is given
in Figure 3. Aswe can see, the transmission device(i.e.,MICROWAVE)
and base station (i.e., NODEB) account for most and the hub de-
vice(i.e. router) has a much small number. We further investigate
the edges, which are summarized in Table 3. In general, a telecom-
munication network is bi-directed. In the downlink mode(e.g. a

user receives the information from the website), the data comes
from the core network flowing from routers to the base station(to
terminal devices)1 via the microwaves, which makes the network a
tree-like structure. However, the MICROWAVE may connect to the
same type on the other paths, leading to the network in some areas
grid or circular.

Table 3: Number of edges among different devices
Source device Target device Number of Edges
ROUTER ROUTER 0
ROUTER MICROWAVE 2,001
ROUTER NODEB 22

MICROWAVE MICROWAVE 23,282
MICROWAVE NODEB 16,119

NODEB NODEB 0
Total 41,424

3.2 Exploratory Analysis
We further present some characteristics on the topology of Tele-
Graph and the statistics are summarized in Table 4, where den-
sity [23] and hyperbolicity [4] measure the sparsity and “tree-
likeness” of a given network, respectively. Specifically, the density is
0 for a graph without edges and 1 for a complete graph, and the hy-
perbolicity value of approximately zero means a high tree-likeness.
As anticipated, TeleGraph, which has 41,143 nodes and 41,424 edges,
is highly tree-like and sparse as it has very small values on both
density and hyperbolicity. We then visualize the degree distribution,
as given in Figure 4. As expected, the power-law phenomenon is
very obvious with most of the nodes having a degree less than three
and a very few hub nodes(i.e. routers) with distinctly large degree
values. Though the dataset is nearly a tree, a few loops exist with
the largest ones with 13 nodes and the smallest one having only 3
nodes. We further analyze the distribution of the loop size which is
further given in Figure 5. As observed, most of the cycles involve
only 3 or 4 nodes and a small proportion of the cycles have more
than 5 nodes.

Table 4: Statistics of TeleGraph
Statistics #Nodes #Edges #Cycles Density 𝜌 Hyperbolicity 𝛿
Value 41143 41424 684 0.000049 0

* The smaller 𝜌 means the dataset is more sparse.
★ The smaller 𝛿 indicates the dataset has a more evident tree-like structure.

In summary, the TeleGraph is a highly sparse and hierarchical
network with rich node attributes, which is then a suitable bench-
mark to assess and foster link prediction techniques. However,
inferring the missing links in a highly sparse and tree-like graph is
challenging. As mentioned in work [15], most of the widely used
heuristics measures overly count on the closed triangle structures
and perform poorly in a tree-like or highly sparse network. On the
other hand, most of the GNN-based link prediction algorithms are
feature-centric, and how to utilize and encode the node attributes
is also not easy.

1For the up-link mode, the information flows from the base station to microwave and
then router to core network
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Figure 4: Degree distribution of TeleGraph, which is asymp-
totically power-law distributed
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Figure 5: Node number distribution of the cycles

4 BENCHMARK EXPERIMENTS
In this section, we present the benchmark experiments and discuss
the observations.

Baselines. To investigate the link prediction algorithms on
the tree-like TeleGraph dataset, we experiment with diverse well-
known baselines, including heuristic methods: common neigh-
bors (CN) [12], Adamic-Adar (AA) [12], Personalized PageRank
(PPR) [18]; embedding-based models: node2vec [7]; GAE-based mod-
els [9] ;and the state-of-the-art link predictionmodels: NeoGNN [24]
and SEAL [27]. Specifically, heuristic methods formulate hand-
crafted rules as scoring functions. node2vec [7] learns representa-
tions on graphs via optimizing a neighborhood preserving objective.
For GAE-like baselines, we use different encoders including well-
known Euclidean GNNmodels GCN [10], GAT [17], and pioneering
hyperbolic graph neural network HGCN [4] 2. Their differences
are mainly in the mechanism of message passing where GCN ag-
gregates information through structure information while GAT ag-
gregates information through feature correlation. Hyperbolic deep
models generalize (graph) neural networks into hyperbolic space,
abstracting underlying hierarchical layout in the graph datasets,
achieving competing results of tree-like datasets on various tasks.
NeoGNN [24] learns the structural embeddings by the overlapped
neighborhoods which are further combined with the node repre-
sentations obtained from the feature-based GNN for link prediction.
SEAL [27] has achieved various SOTA results on link prediction
tasks whose priority mainly lies in the extraction and encoding of
local structural information.

2Inner product is employed as a decoder to compute the link existence.

Hyperparameter settings. We split the edges to 85%/5%/10%
for training, validation and test, respectively. And the random seed
is set as 2 in data spilt. The embedding dimensions are set as 32 as
well as the batch size for all models in order to make comparison
fair. Each experiment is conducted for 10 times and we report both
the mean and standard deviation. All the code is implemented with
PyTorch and we use the implementation in PyTorch Geometric [5]
for the GNN-related algorithms.

4.1 Experiment Results
The TeleGraph dataset provides both the device’s connections as
well as the non-vectorized node attributes (i.e., alarm occurrence).
Graph neural networks are essentially feature-centric, which en-
courages us to first investigate some preliminary feature engineer-
ing schemes. Then we provide more comprehensive comparisons
regarding the benchmark methods.

Table 5: Results on validation (denoted as Val) and test set of
different feature schema
Encoder Embeddings Val AUC Val AP Test AUC Test AP

GCN
one-hot 69.01 ± 0.97 69.79 ± 0.89 68.74 ± 0.77 69.62 ± 0.64
count 64.52 ± 0.29 65.38 ± 0.32 64.20 ± 0.30 65.38 ± 0.32
random 51.87 ± 0.65 54.79 ± 0.69 51.87 ± 0.73 54.88 ± 0.72

Figure 6: AUC vs Epoch on validation set

4.1.1 Comparison on different feature schemes. In this work, we
come up with three initiatory embedding initialization schemes. In
particular, one-hot and count assign a 1× 240 dimensional vector to
each node according to whether the alarm appears or not and the
number of occurrences, respectively. random initializes an input
embedding for each node randomly, which is widely adopted in
situations where the node attributes are not available. We here em-
ploy it to justify the informativeness of the alarm logs. The results
are summarized in Table 5 3. As we can see, one-hot produces the
best performance with the AUC and AP on the test set both exceed-
ing the second-best count by 5%. One the other hand, randomly
initiating the features produces the most unsatisfactory results that
both the AUC and AP are around 0.5, which is very similar to what
chance would predict. As further observed from Figure 6, the AUC
3We here only list the results of GCN due to the page limitation, both the results and
analysis are consistent to that of GAT and HGCN.
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value of random even decreases with the training epoch. This is
probably because the dataset is very sparse in nature, masking the
validation and test edges make the message propagation and aggre-
gation even harder and randomly assigning the features may bring
some noise that hinders the learning of models.

Table 6: Performance Comparison on TeleGraph. Average
values with the standard deviations are reported. For both
AUC and AP, the higher, the better.
Method Val AUC Val AP Test AUC Test AP

CN 51.01± 0.00 51.00± 0.00 51.06± 0.00 51.06± 0.00
AA 51.01± 0.00 50.99± 0.00 51.06± 0.00 51.06± 0.00
PPR 51.76± 0.00 51.60± 0.00 51.75± 0.00 51.83± 0.00
Node2Vec 52.22 ± 0.68 56.34 ± 0.69 51.94 ± 0.51 56.01 ± 0.54
GCN 69.01 ± 0.97 69.79 ± 0.89 68.74 ± 0.77 69.62 ± 0.64
GAT 66.80 ± 0.12 67.78 ± 0.13 67.51 ± 0.12 67.07 ± 0.16
HGCN 67.49 ± 0.36 67.65 ± 0.24 67.46 ± 0.38 67.84 ± 0.27
NeoGNN 63.20 ± 1.00 67.38 ± 0.66 62.45 ± 1.13 67.07 ± 0.70
SEAL 80.74 ± 0.15 80.43 ± 0.23 79.48 ± 0.14 78.82 ± 0.20

4.1.2 Performance comparison of baseline methods. The experi-
mental results of baselines methods on TeleGraph are further sum-
marized in Table 64. As anticipated, the heuristic methods (i.e.,
CN, AA, and PPR) which are largely based on the closed trian-
gular structures fail to correctly predict the link existence of the
given tree-like dataset. The AUC and AP values on both valida-
tion and test are around 0.5, which is very similar to the random
guess. One the other hand, the GAE-based methods (i.e., GCN, GAT,
and HGCN) and sub-graph classification based GNN model SEAL
outperform either the heuristic measures or the graph embedding
model (i.e.,Node2Vec) by large margins, confirming the GNN-based
solutions which formulate the link prediction task as a supervised
learning problem are promising. It is noted, HGCN, which has been
widely proved to be promising for tree-like dataset, is neck and
neck with its Euclidean counterpart GAT. The possible reason is
the handcrafted node features fail to well-preserve the information
carried on the node attributes, which hinders the representation
power of hyperbolic geometry. Though NeoGNN suggests explicitly
incorporating the structural information to the feature-GNNs, it
still falls into the GAE framework and barely produces satisfactory
performance on the given dataset. Last but not least, SEAL, which
formulates the link prediction task as a sub-graph classification
problem and further explicitly encodes the node position, shows
apparent advantages over the others on this highly hierarchical
and sparse dataset. In summary, both the structural information
and informative attributes are for link prediction. Most of the hand-
crafted heuristic measures heavily count on the triangle structure
or preferential attachment assumption and fail to work in the highly
tree-like and sparse dataset. Though the subgraph extraction and
encoding scheme(i.e., SEAL) is promising, explicitly encoding and
incorporating the semantic information is needed for further per-
formance improvement.

4one-hot is adopted as the initial embedding schema for message-passing based mod-
els(i.e.,GAT, GCN, and HGCN).

5 CONCLUSION
Link prediction is the problem of detecting the presence of a con-
nection between two entities in a network. Research fields, ranging
from network science to machine learning and data mining, have
taken a great interest in link prediction task. Given that hierar-
chical patterns found in many real-world applications while the
corresponding research datasets are inadequate, in this work, we
present a new real-world dataset TeleGraph, which is a medium
sized telecommunication network with a rich set of attributes. Our
descriptive analysis of the dataset has demonstrated it is highly
hierarchical and sparse, which makes the heuristic measures fail to
work. We verified this precognition by a series of experiments. Our
findings show that most of the available algorithms fail to produce
the satisfactory performance on this tree-like dataset except the
subgraph-based GNN-models. More specifically, the results of a
series heuristic measures are even close to random guesses, which
calls for special attention in practice. We also believe that TeleGraph
can serve as an important benchmark to assess and foster novel
link prediction techniques.
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