Traffic Accident Prediction using Graph Neural Networks: New
Datasets and the TRAVEL Model

Baixiang Huang
huangb@comp.nus.edu.sg
National University of Singapore
Singapore

ABSTRACT

Traffic accident prediction is crucial for reducing and mitigating
road traffic accidents. Many existing machine learning approaches
predict the number of traffic accidents in each cell of a discretized
grid without considering the underlying graph structure of road
networks. To allow us to incorporate road network information,
graph-based approaches such as Graph Neural Networks (GNNs)
are a natural choice. However, applying GNNs to the accident pre-
diction problem is made challenging by a lack of suitable graph-
structured traffic accident prediction datasets. To overcome this
problem, we first construct one thousand real-world graph-based
traffic accident datasets, along with two benchmark tasks (accident
occurrence prediction and accident severity prediction). We then
comprehensively evaluate eleven state-of-the-art GNN variants
using the created datasets. Moreover, we propose a novel Traffic
Accident Vulnerability Estimation via Linkage (TRAVEL) model,
which is designed to capture angular and directional information
from road networks. We demonstrate that the TRAVEL model con-
sistently outperforms the GNN baselines. The datasets and code
are available at https://github.com/baixianghuang/travel.
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1 INTRODUCTION

Road traffic accidents are a major global public health issue, and
are the leading cause of death for people aged five to twenty-nine
years globally [24]. In this work, we focus on environmental risk
factors of road traffic accidents - in particular, can we predict how
risk-prone a traffic intersection is: that is, the number and severity
of accidents occurring near the intersection, based only on read-
ily available street map data, such as the road geometry, nearby
highways, landmarks, etc.? This work can help governments to
mitigate traffic risks, such as by informing the design of future road
networks, and in the planning of accident response systems with
the awareness of risk-prone accident hotspots.

A city road network has a variety of road features that could
potentially be correlated with accidents - such as road type, road
length, and the number of lanes. An analysis of traffic accidents in
the United States between 2016 and 2020 shows that most of the
accidents took place near junctions or intersections [15]. Hence,
our goal is to design an algorithm that learns how this information
should be used to predict the riskiness of each road intersection.

Existing studies applying machine learning to traffic accident
prediction typically use non-graph-based approaches: most com-
monly, they discretize the data based on a spatial grid, then use
various features of each grid cell to predict the number of accidents
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in each cell. However, this approach has the drawback of relying on
manually designed features, rather than the more flexible approach
of allowing the algorithm to learn directly from real-world street
map data.

In contrast, our approach treats the map data as a graph, allowing
us to flexibly incorporate road features from both a location itself
and its nearby locations: for example, the shape or angle of roads
leading to an intersection. Moreover, graph-based approaches allow
much longer-range information to be taken into account by aggre-
gating information from neighbors multiple hops away, in contrast
to existing grid-based approaches which only use information from
within each grid cell.

In addition, using graph-based approaches allows us to take ad-
vantage of rich and readily available sources of geospatial data such
as OpenStreetMap (OSM). Maps from OSM are already structured
as graphs, where nodes represent intersections and dead-end nodes,
and edges represent roads. This allows our approach to be applied
for predicting risky intersections wherever map data is available,
without having to collect or digitize additional customized datasets
for a specific area.

To learn from graph data, Graph Neural Networks (GNNs) are
becoming increasingly popular [26]. However, it is difficult to apply
GNNss to the traffic accident prediction problem. One major reason
is the lack of suitable datasets: the current accident datasets are not
organized alongside a graph structure. To overcome this problem,
we construct a new set of datasets for one thousand US cities, with
two prediction tasks (accident occurrence prediction and accident
severity prediction). We do this by merging and preprocessing
data from the US-Accidents dataset [15] with graph-based street
geospatial data from OpenStreetMap. These datasets allow users
to apply graph-based approaches to the traffic accident prediction
problem, without significant preprocessing effort.

Moreover, we develop a novel GNN architecture called Traffic Ac-
cident Vulnerability Estimation via Linkage (TRAVEL). In contrast
to existing GNNs, where each node aggregates from its neighbors
using simple functions like ‘mean’ or ‘sum’, ours aggregates in a
way that captures both the angles and directions of roads adjacent
to a node. TRAVEL’s graph convolution layers consist of two com-
ponents: the first component captures the angles between roads,
while the second component aims to learn the direction information
of the roads.

The key contributions of this work are as follows: (1) We for-
mulate the graph-based traffic accident prediction as a node pre-
diction problem, which aims to predict accident occurrences or
accident severities over a road graph. (2) We construct and release
one thousand benchmark datasets with two accident-related predic-
tion tasks to enable the use of graph-based approaches for accident



prediction, by merging real-world graph information from Open-
StreetMap with accident data from the US-Accidents dataset [15].
(3) We propose a new GNN architecture, TRAVEL, which can cap-
ture angular and directional information from road networks. We
comprehensively evaluate our model against MLP, XGBoost, and
eleven existing GNN baselines. We validate that our proposed model
consistently has the best performance on the benchmark datasets.

2 RELATED WORK

The traffic accident prediction problem is often formulated as a spa-
tiotemporal forecasting task. Early studies apply k-nearest neigh-
bors, k-means clustering, and logistic regression [14, 19]. Chen
et al. [4] use human mobility features obtained from stacked de-
noising autoencoders to infer traffic risk. Yu et al. [28] combine
Long Short-Term Memory (LSTM) and stacked autoencoders for
post-accident condition prediction. Zhou et al. [30] use deep learn-
ing for spatiotemporal accident prediction over a rectangular grid.
With the emergence of graph-based deep learning approaches, some
work applies GNNs to spatiotemporal traffic accident forecasting
[27, 29, 31].

Traffic accident prediction has been also formulated as a clas-
sification or regression problem without considering temporal in-
formation. Early work proposed Poisson, Negative Binomial, and
Negative Multinomial regression models to predict the number
of accidents over a discretized grid [3, 17]. Najjar et al. [16] train
traditional CNNs on satellite images of traffic accidents to produce
a traffic risk map. These studies convert road networks to regu-
lar 2-D grids because traditional convolutional operations handle
spatial correlations over such grids. Also, existing work generally
does not use street map data. In contrast, our approach not only
takes full advantage of graph structures of road networks but also
incorporates real-world environmental features. Accident times-
tamps are included in our proposed datasets but are not used in our
experiments because we focus on features unrelated to time.

3 PRELIMINARIES

3.1 Problem Statement

We model a road network as a weighted directed graph G = (V, E),
where vertices in V represent endpoints (intersections and dead-
end nodes) in the road network, while edges in E represent roads.
The graph also has a set of node features x, € R%, where d,, is
the number of node features, and edge attributes e, € R% for
(u,v) € E, where d is the number of edge attributes.

In the ‘accident occurrence’ prediction task, we aim to output a
binary prediction indicating whether a vertex has traffic accidents
or not. In the ‘accident severity’ prediction task, we bucketize the
average severity of accidents at each node, thereby grouping the
nodes into a finite number of classes. Then, we aim to predict the
class of each node. Therefore, both of these tasks are formulated as
node classification problems. Each node v has its label denoted as

Yo-

3.2 Basic GNN Framework

A GNN model uses node features x; to learn the representation of
a node. In each layer, each node aggregates representations of its
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Table 1: Statistics of one thousand datasets.

Avgnode % accident

Measure #nodes # edges degree nodes
mean 3075.47 7845.19 2.55 10.23
std 5581.99 14313.71 0.18 8.58
min 45.00 106.00 1.73 1.05
25% 672.00 1708.75 2.42 5.11
50% 1487.00 3638.00 2.53 7.58
75% 3049.25 7752.75 2.66 11.83
max 59694.00  149281.00 3.17 62.18

neighbors and updates the representation of itself. The k-th layer
of a basic GNN is:

by = Update® (b, m{( g
mit,,) = Ager ™ ((hi Y, vu e N(o)}) @

where hf,k) is the node embedding of node v in the k-th layer.

Initial 0-th layer embeddings hl(JO) are equal to node features x,.
m () denotes the aggregated message from node 0’s neighborhood
N (v) = {u: (u,v) € E}. Update is a neural network that updates
the representation of v, and Aggr is a function that aggregates
representations of N (v).

4 DATASET CONSTRUCTION

A major obstacle explaining why it is difficult to apply GNNss to traf-
fic accident prediction is the lack of suitable graph-based datasets.
Hence, in this section, we describe how we construct and release
one thousand Traffic Accident Benchmark (TAB-1k) datasets by
combining the US-Accidents dataset [15] and road data from Open-
StreetMap (OSM). Numerical measures of TAB-1k can be found in
Table 1. To provide a convenient and user-friendly interface, we
release our datasets following the format of datasets in PyTorch
Geometric [8], a popular package for GNNGs. Initializing our datasets
will automatically download the preprocessed files, the result of
which can be directly plugged into existing GNNs.

4.1 Data Collection

The raw accident events come from the US-Accidents dataset [15],
a real-world traffic accident dataset that covers forty-nine states of
the United States. It contains more than 4.23 million instances of
traffic accidents data between February 2016 and December 2020.
Moosavi et al. [15] report that roughly 32% of accidents occurred
on or near local roads (e.g., streets, avenues, and boulevards), and
about 40% took place on or near high-speed roads (e.g., highways,
interstates, and state roads). Their analyses also demonstrate that
most of the accidents took place near intersections. We use the data
across the entire four-year time period. Based on the data from
the US-Accident dataset, we sort the cities by their total counts of
traffic accident occurrences. Next, we select one thousand cities
with the most accidents to construct our datasets.

To construct our graphs, we combine the accident data with
geospatial data from OpenStreetMap, a collaborative initiative that
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Table 2: Edge features (top) and node features (bottom) in-
cluded in our datasets.

Graph feature Description

highway The type of a road (tertiary, motorway, etc.).
length The length of a road.

bridge Indicates whether a road represents a bridge.
lanes The number of lanes of a road.

oneway Indicates whether a road is a one-way street.
maxspeed The maximum legal speed limit of a road.
access Describes restrictions on the use of a road.
tunnel Indicates whether a road runs in a tunnel.
junction Describes the junction type of a road.
highway The road type of a node.

street_count The number of roads connected to a node.

provides a freely available geospatial database. The OSM data con-
tain rich environmental features such as road type, road length,
bridge type, and the number of lanes. These features are also keys
for OSM tags, which describe the specific attributes of map ele-
ments (nodes, ways, or relations). We use the OSMnx [2] package
to download geospatial data from OSM to build traffic road net-
works. OSM includes walkable, drivable, and bikeable urban road
data. Since most accidents occur on the drivable networks, we only
use drivable public road data (private-access or service roads not
included). In a road network, nodes are points such as intersections
and dead-ends, and edges represent roads.

4.2 Data Preprocessing

We first build road networks using structural and feature infor-
mation from OSM. The edge and node features, and their descrip-
tions, are listed in Table 2. Next, missing values are replaced with
a new category, and feature data are encoded using one-hot en-
coding. Then the coordinate data of accident locations from the
US-Accidents dataset are used to find the nearest corresponding
nodes in the road networks based on the haversine distance. For the
accident occurrence prediction task, binary labels are added to each
node indicating whether it contains at least one accident. For the
severity prediction task, average accident severities are bucketized
into eight classes (using an interval size of 0.5) to be used as labels.
Finally, data are split using a stratified split: 60% of the data is used
for training, 20% is used for validation, and the remaining 20% is
used for testing.

5 TRAVEL FRAMEWORK

5.1 Overview and Motivation

Road geometry-related characteristics such as turning radius and
direction (i.e. left versus right turns) have long been recognized as
important factors affecting road safety [18]. Motivated by this, we
design a GNN approach that is effective at capturing information
from both road geometry, as well as allowing the use of rich node
and edge features already available in OSM.

How do we design a GNN architecture that effectively incorpo-
rates road geometry? We find that an effective way to do this is
to augment the message passing process in GNNs with additional

angular and directional information. The angular component al-
lows our model to better capture relevant information about an
intersection (e.g. whether it has a right or left turn, sharp turns,
etc.). The directional component allows the model to capture the
direction of a road: e.g. whether it is heading north-to-south versus
east-to-west, which can be relevant in practice.

We describe TRAVEL as a layer taking in the previous node em-
beddings h, (suppressing the layer number, since we only describe
a single TRAVEL layer).

5.2 Angular Component

The angular component augments the message passing process
from node u to node v with information about the angles between
the road (u, v) and all the other roads intersecting at node v. This al-
lows our GNN model to take into consideration the angles between
roads, which are of key importance to road geometry, throughout
the message passing process.

An important aspect of the design of our angular component
is that it is rotationally symmetric. This means that the output
computed by this component at a node v does not change even if
we rotate the graph by any rotation centered at v. This makes sense
intuitively: the road geometry of a particular intersection does not
change if we rotate all roads about this intersection by any fixed
angle. This rotational symmetry is important as it ensures that this
component has inductive biases! that are well suited to its intended
task of capturing road geometry.

Given points u, v, w, let 1(%, m) denote the directed angle2
from ud to wd. Recall that our angular component is designed to
augment the messages passed from u to v with information about
the angles between road (u,v) and other roads intersecting at v.

Formally, the set of (directed) angles between road (u, v) and each
of the other roads at v is:

Oyp = {£ (w8, wd) : w € Ny \ {u}} ®)

Next, we will aggregate over @y, to extract suitably summarized
information from this set. Rather than using standard aggregation
functions, we use a designed aggregation function that aims to
particularly emphasize the presence of informative features: namely
1) sharp left turns, 2) sharp right turns, and 3) nearly straight roads.
We do this by first defining @7, as the set {|7 — @] : § € Pyy}, then
aggregating as follows (where || denotes concatenation):

ayy = min(Pyy) || max(Pyy) || min(@ﬁv) 4

The first two components correspond to the sharpest angles of
left and right turns to edge (u, v). The third component corresponds
to the angle of (u,v) to the road which is closest to a straight road
along with (u,v). Thus, the aggregated angular information ay,
provides a concise summary of the useful information contained in
angles between (u,v) and other roads at v.

Finally, our angular component incorporates this angular in-
formation a,, when passing a message along (u, v). The angular

!Inductive biases describe the assumptions that a model uses to produce output on
unseen data.
2This is the signed angle that 220 must be rotated to have the same direction as wo.



component takes in node representations h,, and outputs the an-

. Angl
gular node representations hy "

WA _ ReLU(Wh, + m‘;/“(i‘)e) )
Angl
migEt = >, MLP(h | eus Il auo) ©)
ueN(v)

An important property of the angular component is that it is
rotationally symmetric. We show this as follows.

THEOREM 5.1 (ROTATIONAL SYMMETRY). The angular component
is rotationally symmetric.

Proor. When rotating all points about v by a fixed rotation,
each of the directed angles (0, wd) remains unchanged as u and
w rotate by the same angle around v. This implies that all the
a,p also remain unchanged. Since the edge features e, are also

Angle

unchanged by the rotation, thus h;, is also unchanged. O

5.3 Directional Component

As we have seen, the angular component is designed to be rotation-
ally symmetric for the purpose of modeling road geometry. How-
ever, the directional information ignored by the angular component
can still be useful in some contexts: e.g. in some cities, north-south
roads may have different characteristics from east-west roads. This
motivates our directional component, which captures the direction
that each road is heading in.

Let LaT, and LoNy, denote the latitude and longitude of node u,
respectively. This allows us to compute the direction of the edge
(u,0) as:

dyy = (LATy — LATy, LONy — LONy,) 7)

Like in the angular component, we incorporate directions into

the message passing process:

hD¥F = ReLU(Wh, + mR}EU)) ®)
me = D, MUP(hy e Il duo) )
ueN(v)

5.4 Combined TRAVEL Layer

Finally, the combined TRAVEL layer’s output is simply the con-
catenation between the output of the angular and directional com-

ponents, i.e. hjngle | hD™". This TRAVEL layer can be straightfor-
wardly trained using standard loss functions (cross-entropy loss in
our setting), or plugged into any existing GNN. The angular and

directional features are provided in the released datasets.

6 EXPERIMENTS
6.1 Traffic Accident Occurrence Prediction

In the accident occurrence prediction task, which is formulated as a
node classification problem, we aim to predict whether a node has
traffic accidents or not based on previous accident records. Table
4 and Figure 3 from Appendix A show the prediction results on
the created datasets. We generally observe that: (1) The proposed
TRAVEL consistently achieves the best performance on all the
metrics, due to its ability to capture angular and directional features
on top of other environmental features. (2) GNN-based approaches
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generally outperform XGBoost and MLP. This is because nodes
in GNNs can aggregate feature information from their neighbors,
while the MLP and XGBoost models can only learn from local
feature data. (3) GNN variants that support multi-dimensional edge
features generally outperform models that do not support them.

6.2 Traffic Accident Severity Prediction

The goal of this task is to predict the severity of accidents. Since a
node may have multiple accidents with different severity, we com-
pute each node’s mean severity and bucketize this mean severity
into eight classes. Accident severity is represented by a number
between 0 and 7, where 0 denotes no accident, 1 indicates the most
negligible impact on traffic, and 7 indicates a significant impact
on traffic. Experiment results (Table 5 and and Figure 4) provided
in Appendix A demonstrate that the TRAVEL model again clearly
outperforms the baselines across all datasets in terms of weighted
F1 score.

Further details about software used, architectures, and hyperpa-
rameters, as well as hyperparameter robustness and running time
experiments, can be found in Appendix A. On the whole, they show
that TRAVEL performs well even with very minimal hyperparam-
eter tuning, and its running time is comparable to other GNNs
(particularly those that use edge features), and slightly faster than
MPNNSs on most datasets.

7 CONCLUSION

In this paper, we affirm the benefits of GNNs for the critically
important task of identifying risky road intersections. We first for-
mulate the accident occurrence prediction and accident severity
prediction tasks as graph-based node classification problems. To
stimulate future research in this area, we construct and release
one thousand graph-based Traffic Accident Benchmark datasets
(TAB-1k) with these two benchmark tasks, and evaluate thirteen
state-of-the-art machine learning approaches on them. Further-
more, we propose our TRAVEL framework, designed to capture
angular and directional attributes, and prove its theoretical prop-
erty (rotational symmetry of angular component). The experiments
show that TRAVEL consistently outperforms the baselines. Practi-
cally, TRAVEL requires only features available in OpenStreetMaps
as input, so it can be readily applied to almost all cities. For fu-
ture work, we plan to incorporate larger state-level networks and
investigate extensions such as model explainability.
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A EXPERIMENT RESULTS

In this section, we comprehensively evaluate the performance of
fourteen models, finding that TRAVEL clearly outperforms the
baselines on the traffic accident occurrence and severity prediction
tasks. Figure 1 and 2 plot the labels to be predicted for the two tasks
respectively.

A.1 Baselines

We compare our TRAVEL model with two generic machine learn-
ing models and eleven state-of-the-art GNN models: (1) XGBoost:
A scalable gradient boosting tree-based approach [5]. (2) MLP:
A multi-layer perceptron is a classic feedforward artificial neu-
ral network. (3) GCN: Graph Convolutional Networks generalize
CNNs from low-dimensional regular grids to graph data using
neighborhood-based filters [12]. (4) ChebNet: Chebyshev spectral
graph convolution networks are spectral graph convolutional ar-
chitectures with fast localized spectral filtering [6]. (5) ARMANet:
Graph neural networks with convolutional auto-regressive moving
average (ARMA) filters [1]. (6) GraphSAGE: A general inductive
framework for inductive representation learning on graphs [10].
(7) TAGCN: Topology adaptive graph convolutional networks use
fixed-size learnable filters to perform convolutions on graphs [7].
(8) GIN: Graph Isomorphism Networks generalize the Weisfeiler-
Lehman (WL) graph isomorphism test [23, 26]. (9) GAT: Graph
attention networks apply attentional mechanisms during aggrega-
tion [22]. (10) MPNN: Message Passing Neural Network is a general
GNN framework designed for computational chemistry, reasoning,
and simulation. [9]. (11) CGC: Crystal graph convolutional neural
network is an accurate and interpretable framework that can extract
the contributions from local features to global properties [25]. (12)
GEN: GENeralized graph convolutional neural networks support
softmax, power, and mean aggregation [13]. (13) Transformer:
Graph transformers adopt vanilla multi-head attention into graph
learning with taking into account the case of edge features [21].

Among GNN baselines, GCN, ChebNet, ARMANet, GraphSAGE,
TAGCN, and GIN do not support message passing with multi-
dimensional edge features. In contrast, GAT, MPNN, CGC, GEN,
and Transformer support message passing with multi-dimensional
edge features.

A.2 Results Analysis

Table 3 shows the statistics of eight sample datasets. It also indicates
that the traffic accident data are imbalanced: only a small proportion
of the nodes have accidents. Therefore, the models are evaluated
based on F1 score, Area Under the Receiver Operating Characteristic
Curve (AUC), and Accuracy. Table 4 and Table 5 show the prediction
results on the sample datasets.

To evaluate performance across the full set of one thousand
datasets, in Figure 3 and Figure 4, we use the Wilcoxon-Holm critical
difference diagram[11]. It can be interpreted as follows: methods are
arranged by their average rank, so the rightmost method (TRAVEL)
is the one with overall best performance in terms of F1 score, i.e.
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Figure 1: Traffic accident locations of Houston, Charlotte, Dallas, and Austin.
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Figure 2: Traffic accident severities of Houston, Charlotte, Dallas, and Austin.
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Figure 3: Critical difference diagram of the traffic accident occurrence prediction task. TRAVEL performs statistically signifi-

cantly better than all other methods.
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Figure 4: Critical difference diagram of the traffic accident severity prediction task. TRAVEL performs the best overall, and
statistically significantly better than all other methods except Transformer.

lowest average rank. Meanwhile, the thick horizontal lines groups
a set of classifiers that are not significantly different in performance
from one another.

A.3 Training Time

We evaluate the training time of our TRAVEL framework against
thirteen baselines. As demonstrated in Table 6, our TRAVEL model

has a similar execution time compared to the MPNN model in the
traffic accident occurrence task. Likewise, Table 7 shows that the
running time of the TRAVEL framework is less than that of the
MPNN model in most cases in the traffic accident severity prediction
task.
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Table 3: Statistics of eight sample datasets.

City Houston Charlotte Dallas Austin Los Angeles Atlanta Seattle Chicago
# nodes 59694 29364 36022 25549 49713 13210 19021 28668

# edges 149281 68403 92117 63554 136742 34513 50227 76242
Avg node degree  2.50 2.33 2.56 2.49 2.75 2.61 2.64 2.66

% accident nodes ~ 33.90 31.15 30.39 35.63 12.46 14.67 26.56 15.71

Table 4: Accident occurrence prediction results in terms of F1 score(%), and AUC(%).

Houston Charlotte Dallas Austin Los Angeles Atlanta Seattle Chicago
Classifer F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC
XGBoost 2234 55.60 44.89  62.95 33.74 59.48 29.11 58.03 15.58 54.13 36.23 61.40 3599 60.71 48.32 67.77
MLP 22.33 67.46 44.89 73.68 33.74 69.53 29.26 69.61 12.95 65.81 37.66 63.57 36.09 71.66 51.19 74.75
GCN 38.57 71.38 57.44  80.41 45.84  74.66 60.43 79.68 38.10 79.29  43.65 79.26 53.85 79.64  35.09 79.66
ChebNet 45.06 73.88 59.07 81.04 50.72 77.58 62.16 80.69 38.00 80.58 48.72 79.14 55.58 81.48 49.69 80.92
ARMANet 45.40 73.99  60.37 81.22 47.36 77.51 62.65 80.64  38.90 80.43  49.16 79.43 56.20 81.16 50.51 80.60
GraphSAGE 55.41 73.33 60.17 81.10 46.73 76.09 60.60 80.03 40.63 79.63 50.17 78.90 57.47 79.90 53.25 80.79
TAGCN 49.16 75.50 61.64 81.77 54.88 78.70 65.53 81.52  46.56 83.84  49.35 82.06 57.89  82.20 52.72 81.21
GIN 46.88 73.33 61.08 80.77 48.47 76.34 62.14 80.66 40.41 81.17 45.95 80.73 55.11 81.00 46.21 80.00
GAT 44.57 73.65 59.21 81.14 47.24 75.81 58.04 80.04 40.51 79.29 53.65 77.09  61.00 79.74  42.14  81.28
MPNN 59.90 79.45 69.76 84.91 55.39 81.37 68.11 84.04 45.06 83.04 53.27 86.48 66.32 85.79 50.91 85.16
CGC 58.20 78.95 68.91 85.69 52.29  80.08 67.79 83.75 45.11 81.29 52.43 86.96 65.14  85.67 51.94 83.73
Transformer  62.69 80.30 68.95 86.30 58.07 81.92 68.67 84.60 46.58 83.42 54.60 87.09 65.43 86.45 52.71 85.29
GEN 63.10 79.96 69.24  86.01 60.91 81.89  70.12 84.75  48.01 80.25 55.78 86.11 63.61 85.92 53.81 84.44
TRAVEL 65.29 81.16 70.28 86.38 64.40 83.02 71.70 85.69 5191 84.68 61.01 88.20 68.34 86.60 5596 85.32
Table 5: Accident severity prediction results in terms of weighted F1 score(%) and accuracy(%).
Houston Charlotte Dallas Austin Los Angeles Atlanta Seattle Chicago

Classifier F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

XGBoost 59.54 68.58  68.84 7234  65.96 72.58 59.37 68.00 81.72 87.12 80.43 86.14 71.12 77.12 78.38 84.74
MLP 59.54 68.58 63.04 71.62 65.96 72.76 59.14 67.96 81.71 87.15 80.43 86.14 70.91 76.99  78.38 84.74
GCN 60.78 67.98 72.12 74.79  67.18 7234  69.76 72.87 83.12 87.74 81.27 86.52 74.33 78.15 79.40 85.18
ChebNet 61.82 68.67 72.24 7494 67.79  73.15 69.66 72.26 83.19 87.67 82.05 86.67 74.80 78.25 78.64  84.85
ARMANet 61.06 68.74 73.03 75.31 67.48 72.98 69.96 72.56 83.38 87.70 81.49 86.52 74.65 78.44 79.73 85.32
GraphSAGE 61.90 69.04  73.67 75.42 67.98 73.11 69.52 72.63 83.67 87.80 81.32 86.40 74.64 78.10  79.57 85.25
TAGCN 62.67 69.05 73.63 75.21 68.69 73.29 71.24  73.53 84.38 87.85 82.16 86.56 75.48 78.67 80.57 85.32
GIN 62.60 68.61 73.71 75.45 68.49  72.33 69.92 72.75 83.46 87.75 82.06 86.63 74.71 78.38 80.13 85.28
GAT 62.43 68.59 73.05 75.43 67.17 72.90 69.81 73.03 83.97 87.84 82.11 86.59 74.74 77.99 79.72 85.32
MPNN 69.59 71.09 78.25 79.52 71.17 74.01 72.91 74.92 84.79  88.05 83.58 87.12 78.32 80.01 81.19  85.55
CGC 67.73 70.69 77.99 79.43 70.04  73.93 71.27 74.47 84.66 87.97 83.67 86.97 76.16 78.99  81.08 85.25
Transformer  69.97 71.68 78.29 79.62 71.43 74.02 73.32 75.59 84.27 87.90 83.44  87.05 78.12 80.27 81.31 85.65
GEN 69.71 71.03 77.74 79.45 72.40 74.55 72.76 75.00 83.07 87.60 84.34 87.08 77.45 80.01 79.83 85.35
TRAVEL 70.88 71.89 79.00 80.32 73.57 7526 75.24 76.66 86.18 8794 85.03 87.58 78.99 80.51 83.05 85.70

A.4 Hyperparameter Robustness

In this experiment, we test the robustness of the models to different
numbers of hidden units on the Dallas dataset. From Table 8, we
observe that our TRAVEL model performs well robustly (and out-
performs the baselines) across the entire range of hyperparameter

values

A.5 Experimental Settings

All neural network models are implemented using PyTorch [20]
version 1.10.0 and PyTorch Geometric [8] version 2.0.2. The models
are trained using the cross-entropy loss and Adam optimizer. We
train models for 300 epochs and use 16 as their hidden dimensions.

The experiments are run on a machine with Intel(R) Core(TM)
i7-7700 CPU @ 3.60GHz and NVIDIA(R) GeForce(R) GTX 1060
graphics card (CUDA 10.2). Due to the large number of datasets
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Table 6: Training time on the accident occurrence prediction task (in seconds).

Classifier Houston Charlotte Dallas Austin LA Atlanta Seattle Chicago

XGBoost 0.56 0.37 0.35 0.26 0.49 0.20 0.26 0.38
MLP 26.95 18.07 18.61 15.86 16.79 10.49 15.15 17.61
GCN 30.02 15.59 22.03 18.67  29.11 12.25 15.47 20.73
ChebNet 30.73 16.14 22.50 19.04  21.32 12.24 16.19 21.60
ARMANet 29.16 14.96 20.87 17.53  20.09 11.60 14.94 19.56
GraphSAGE 28.60 14.95 20.76 17.51 19.37 11.22 13.39 20.01
TAGCN 31.43 16.75 22.69 19.40  21.56 13.28 14.26 21.82
GIN 28.12 14.47 20.82 17.78 19.27 11.32 13.67 19.73
GAT 37.00 17.78 25.64 21.65 2532 13.42 15.47 23.66
MPNN 49.72 21.40 33.48 33.25 3398 18.96 24.21 30.74
CGC 31.83 15.75 23.29 19.80 2592 11.70 13.48 21.29
Transformer 38.17 18.41 27.59 23.54 3223 13.08 15.65 24.51
GEN 39.94 18.97 28.11 22.80  32.52 13.58 15.86 25.98
TRAVEL 47.57 21.03 32.80 26.37  39.05 15.60 17.87 29.25

Table 7: Training time on the accident severity prediction task (in seconds).

Classifier Houston Charlotte Dallas Austin LA  Atlanta Seattle Chicago

XGBoost 3.10 1.60 1.81 1.25 3.00 0.80 1.21 1.97
MLP 16.34 11.27 12.01 10.95 13.70 8.74 9.86 11.91
GCN 20.36 13.68 14.40 13.47 15.99 10.27 11.64 14.33
ChebNet 20.26 14.05 14.97 13.01 16.57 10.50 11.74 14.37
ARMANet 19.30 12.83 13.75 11.94  15.06 9.46 11.00 12.95
GraphSAGE 18.30 12.70 13.66 11.75 15.28 9.37 10.99 12.98
TAGCN 21.89 14.18 15.34 13.06 17.34 10.63 12.22 14.72
GIN 18.33 12.76 13.29 11.64 1472 9.41 10.59 13.53
GAT 24.47 16.74 18.09 15.01 21.87 12.06 13.06 16.56
MPNN 35.01 20.01 23.49 23.35 30.39 15.98 20.14 22.83
CGC 23.59 14.29 15.39 12.36 18.78 9.98 11.33 16.17
Transformer 28.65 16.78 18.73 15.18  22.95 12.07 13.38 18.09
GEN 28.45 16.85 18.73 1512 24.25 11.70 13.97 18.52
TRAVEL 34.56 19.79 23.59 17.98  29.65 13.36 16.23 21.98

Table 8: Experiment results of the accident occurrence prediction task under different hidden dimension in terms of F1 score(%)
and AUC(%) on the Dallas dataset.

16 hidden units 32 hidden units 64 hidden units 128 hidden units

Classifier F1 AUC F1 AUC F1 AUC F1 AUC
XGBoost 33.74 59.48 32.21 58.86 33.22 59.32 31.77 58.68
MLP 33.74 69.53 32.21 68.67 33.20 68.31 31.13 67.45
GCN 45.84 74.66 43.94 73.61 46.44 73.70 47.12 73.70
ChebNet 50.72 77.58 47.95 77.19 52.12 77.13 47.73 76.42

ARMANet 47.36 77.51 46.65 76.94 51.55 76.99 49.85 76.07
GraphSAGE ~ 46.73 76.09 45.64 75.05 46.31 75.61 49.93 75.28

TAGCN 54.88 78.70 50.43 78.06 53.85 78.22 52.02 77.93
GIN 48.47 76.34 47.21 75.96 51.30 77.09 51.37 75.76
GAT 47.24 75.81 44.94 75.59 46.81 75.99 47.40 75.29
MPNN 55.39 81.37 54.85 81.64 57.79 81.78 60.05 81.70
CGC 52.29 80.08 51.83 80.42 51.40 79.77 55.40 80.79
Transformer  58.07 81.92 59.07 82.40 59.30 81.75 59.05 81.97
GEN 60.91 81.89 63.52 82.42 62.41 80.30 62.86 81.86

TRAVEL 64.40 83.02 64.73 82.84 63.71 82.00 63.83 82.55
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(1000) as well as baselines, the experiments take close to 90 hours We also add a fully connected layer after GNN layers to increase
to run in total. their expressive power. Moreover, L2 penalty and dropout layers
All GNN models have two graph convolutional layers, where with 0.5 dropout rates are added to all neural network models to

layer-2 embeddings get information from nodes two hops away. reduce overfitting.
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