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ABSTRACT
Graph convolutional networks (GCNs) are taking over collaborative
filtering-based recommendation. Their message-passing schema
effectively distills the collaborative signal throughout the user-item
graph by propagating informative content from neighbor to ego
nodes. In this demonstration, we show how to run complete exper-
imental pipelines with six state-of-the-art graph recommendation
models in Elliot (i.e., our framework for recommender system eval-
uation). We seek to highlight four main features, namely: (i) we
support reproducibility in PyTorch Geometric (i.e., the library we
use to implement the baselines); (ii) reproduced graph models span
across various GCN families; (iii) we prepare a Docker image to
provide a self-consistent ecosystem for the running of experiments.
Codes, datasets, and a video tutorial to install and launch the appli-
cation are accessible at: https://github.com/sisinflab/Graph-Demo.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Neural networks.

KEYWORDS
Recommendation, Graph Convolutional Networks, Docker

ACM Reference Format:
Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Tommaso Di Noia,
and Antonio Ferrara. 2023. An Out-of-the-Box Application for Reproducible
Graph Collaborative Filtering extending the Elliot Framework. In The 3rd
Workshop on Graph Learning Benchmarks, August 07, 2023, Long Beach,

∗With the only exception of Table 1, the content of the current work is taken from
the paper by Malitesta et al. [10], published in Adjunct Proceedings of the 31st ACM
Conference on User Modeling, Adaptation and Personalization (UMAP 2023).
†Corresponding authors: Daniele Malitesta (daniele.malitesta@poliba.it) and
Claudio Pomo (claudio.pomo.@poliba.it).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLB 2023, August 07, 2023, Long Beach, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

CA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
Recommendation algorithms are pervasive in several user applica-
tions. Their role is to fill the gap among users’ needs and product-
s/services by presenting customers with a list of possible preferred
items. The most popular recommendation paradigm, collaborative
filtering (CF), is driven by the intuition that users interacting with
the same items could share similar preferences.

A bipartite and undirected graph can naturally represent user-
item interactions. Graph convolutional networks (GCNs) have re-
cently emerged as a popular technique in CF to refine users’ and
items’ representations by iteratively aggregating the representa-
tions of neighbor nodes into each ego node (i.e., the message-
passing schema). GCNs are currently adopted in many recommen-
dation tasks, such as session-based [5], sequential [6], social [21],
and multimedia [23] recommendation.

Despite their outbreak in both academia and industry by sur-
passing traditional CF approaches, limited effort has been put into
building unified and comprehensive frameworks to train and eval-
uate state-of-the-art graph recommendation systems. Among the
most noticeable mentions, we may recall RecBole [24, 25], which
implements eight graph recommendation models for general rec-
ommendation (e.g., NGCF [17], LightGCN [7], DGCF [18], SGL [19],
NCL [8], and SimGCL [22]). Recently, Zhu et al. [26] pave the way
to a shared benchmarking pipeline for recommendation (i.e., BARS),
and integrate thirteen models from the graph CF literature (besides
some of the aforementioned models, they also reproduce, for in-
stance, PinSage [20], DisenGCN [9], NGAT4Rec [16], GFCF [15],
and UltraGCN [11]).

In this demonstration, we show how to run extensive experi-
mental settings for six popular graph collaborative filtering models
(i.e., NGCF, LightGCN, DGCF, SGL, UltraGCN and GFCF) that we
recently integrated into Elliot [1], our framework for recommender
systems evaluation. The paper outlines the following contributions:
• Differently from the stable version of Elliot1 which uses Tensor-
Flow as the primary backend [2], we introduce PyTorch Geomet-
ric2 (i.e., one of the most popular Python libraries for geometric

1https://github.com/sisinflab/elliot.
2https://pytorch-geometric.readthedocs.io/en/latest/.
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Figure 1: Architecture of Elliot for graph collaborative filter-
ing. We integrate PyTorch Geometric as backend, categorize
graphmodels into two classes, and dockerize the application.

deep learning) as the additional backend to design graph-based
baselines adopting the explicit message-passing schema; at the
time of this publication, only a few other frameworks have started
to adopt it [24].

• Given the known reproducibility issues related to some non-
deterministic operations in PyTorch Geometric [14], we imple-
ment message-passing with sparse adjacency matrices [12].

• In contrast to existing similar solutions (i.e., RecBole and BARS),
we implement six state-of-the-art graph baselines by following
a novel model categorization [3, 4] that distinguishes between
methods using explicit message aggregation (i.e., NGCF, Light-
GCN, DGCF, and SGL) and going beyond the concept of graph
convolution (i.e., UltraGCN and GFCF).

• As we leverage GPU boost by running PyTorch baselines with
CUDA, we prepare a Docker image3 creating a self-consistent and
out-of-the-box experimental environment that requires minimal
third-party libraries installed on the local machine. To the best
of our knowledge, Elliot is the first recommendation framework
to offer such functionalities.

Codes, datasets, and a video tutorial to install and launch the appli-
cation are accessible at a public GitHub repository4.

2 PROPOSED APPLICATION
This section presents our application for graph collaborative filter-
ing in Elliot. First, we focus on the integration of PyTorch Geometric
by addressing its reproducibility issues. Then, we describe the com-
plete procedure to dockerize our application. Finally, we outline
the steps to easily install and train/evaluate a graph recommender.
PyTorch Geometric in Elliot. Figure 1 depicts the overall archi-
tecture for our framework, organized into: (i) data preparation, (ii)
recommendation, and (iii) performance evaluation. Diving into each
of these modules is out of the scope of this paper (we extensively
explained them in previous works [1, 2]). Conversely, our main
focus is on integrating PyTorch Geometric into the existing Elliot
environment to build and run graph recommendation models. It is

3https://hub.docker.com/r/sisinflabpoliba/demo-graph.
4https://github.com/sisinflab/Graph-Demo.

worth mentioning that, in contrast to other graph recommendation
frameworks, we propose a novel model categorization [3, 4] where
we consider (i) explicit message-passing (e.g., LightGCN) and (ii)
the simplification of graph convolution (e.g., UltraGCN). In the
following, we deepen into graph convolution for recommendation.
Given a user and item embeddings e𝑢 and e𝑖 , the general formula-
tion for the message-passing schema after 𝑙 hops is:

e(𝑙 )𝑢 = 𝜔

({
e(𝑙−1)
𝑖′ , ∀𝑖′ ∈ N(𝑢 )︸                   ︷︷                   ︸

messages

})
, e(𝑙 )

𝑖
= 𝜔

({
e(𝑙−1)
𝑢′ , ∀𝑢′ ∈ N(𝑖 )︸                   ︷︷                   ︸

messages

})
,

(1)
where 𝜔 (·) is the message aggregation, while N(𝑢) and N(𝑖) are
the sets of 1-hop neighbor nodes for 𝑢 and 𝑖 .
Graph approaches leveraging message-passing (i.e., NGCF, Light-
GCN, DGCF, and SGL) inherit the MessagePassing base class [13].
This class provides, among the others, the functions propagate
(which performs both the message and aggregate operations, defin-
ing the generic message and the message aggregation, respectively)
and forward (which generates the outputs). The required input
format to the forward function are, in the minimum setting, the
node embeddings at hop 𝑙 − 1 (E(𝑙−1) ) and an edge array of dimen-
sion 2 × 2𝑀 (edges), with𝑀 as the number of user-item/item-user
recorded interactions, storing indices of users and items with a
bidirectional connection.
Such implementation is straightforward, especially because it per-
mits explicitly defining the custom message formulation for the
generic node as done in several works from the literature (refer
again to Equation (1)). However, there are known reproducibil-
ity issues [14] related to some operations in PyTorch Geometric
since it could behave non-deterministically (e.g., the scatter func-
tion, called by aggregate). To handle it, we follow one of the most
common strategies [14]. That is, we reformulate the single node
message-passing schema from Equation (1) into a matrix formula-
tion adopting sparse adjacency matrices [12]. As an example, let us
define the message-passing formula for LightGCN [7] as:

e(𝑙 )𝑢 =
∑︁

𝑖′∈N(𝑢)
e(𝑙−1)
𝑖′ , e(𝑙 )

𝑖
=

∑︁
𝑢′∈N(𝑖 )

e(𝑙−1)
𝑢′ . (2)

We may rewrite it into the following compact expression:

E(𝑙 ) = A𝑠E(𝑙−1) , (3)

where A𝑠 is the sparse adjacency matrix for the bipartite and undi-
rected user-item graph. By passing A𝑠 instead of edges as input
to forward, it will trigger the call of the message_and_aggregate
function, which does not make use of the scatter operation. Unfor-
tunately, this workaround is not always feasible (e.g., DGCF [18]).
Dockerization. As in similar Python frameworks for machine
and deep learning (e.g., TensorFlow), PyTorch Geometric also sup-
ports models’ training and inference with CUDA technologies for
NVIDIA GPUs. Setting up a suitable development environment
where versions compatibility is ensured for CUDA, cuDNN, and
other third-party libraries could be cumbersome in some cases,
especially in scenarios where users may need different installed
versions of the same frameworks and libraries on one workstation.
To tackle this challenge, we decide to leverage Docker5 to create a
self-consistent and out-of-the-box environment that provides the

5https://www.docker.com/.
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Figure 2: Screenshot of the application start, where user can select the model (e.g., NGCF) and the dataset (e.g., Gowalla).

necessary libraries already installed in a proper configuration set-
ting. Quite conveniently, we adopt the Docker container toolkit
provided by NVIDIA6 for the creation of containers equipped with
customizable versions of CUDA and cuDNN.
First, we build a Docker image derived from this NVIDIA image7,
which comes with Ubuntu 20.04, CUDA 11.6.2, and cuDNN 8. Ad-
ditionally, the custom image includes other useful Linux packages
(e.g., Python 3.8 and pip), a cloned version of our GitHub repository
for this demonstration, and all required Python packages to run
the framework. You may refer to this link for the Dockerfile we
use to build the image. Finally, to pull and run a Docker container
from it, we also release the docker-compose YAML file (accessible
at this link). It allows all GPUs on the machine to be used within
the container, creates a bind mount between the results/ folder
in the container and a homonym folder on the host (thus storing
permanently all generated files), and runs the application.
Installation and running. Thanks to the core functionalities of
NVIDIA-powered Docker containers, the installation requirements
needed to run our application are minimal. You may refer to the
official installation guide8.
As for the pre-requisites, ensure you have the proper NVIDIA dri-
vers installed on the host machine. Then, follow the indicated pro-
cedure to install Docker9 and the NVIDIA Container Toolkit10. If
everything works smoothly, you should be able to pull and run a
Docker container with any CUDA and cuDNN versions (you may
test the application by launching a container with the command
nvidia-smi which shows a snapshot on the GPU usage). Finally,
Docker Compose needs to be installed on the host machine11.

6https://github.com/NVIDIA/nvidia-docker.
7https://dockr.ly/3aWAtWt. The URL has been shortened to save space.
8https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-
guide.html.
9https://docs.docker.com/engine/install/ubuntu/.
10https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-
guide.html#setting-up-nvidia-container-toolkit.
11https://www.digitalocean.com/community/tutorials/how-to-install-and-use-
docker-compose-on-ubuntu-22-04.

Once everything has been correctly set up, the custom Docker
image can be pulled, and a container can be instantiated from it.
To do so, you may use the docker-compose YAML file we provide
in the GitHub repository. When the application starts (Figure 2),
the user is asked to insert the model’s name and the dataset, that
is downloaded on-the-fly from the cloud. After that, the selected
model is trained, validated, and tested on the chosen dataset for
some hyper-parameter configurations (see later). You may refer to
the official Elliot’s documentation12 and GitHub page for a com-
prehensive presentation of the formatting of the results. We also
release a video tutorial for the reader13.

3 AN EXPERIMENTAL FLOW
Settings.We test our application on three popular recommenda-
tion datasets, namely: Gowalla, Yelp2018 and Amazon Book. These
datasets can be directly linked to those employed in the Light-
GCN experiments. Indeed, the methodological approach adopted in
this investigation seeks to replicate the outcomes associated with
six state-of-the-art models for graph-based recommendation sys-
tems. Notably, all of these models (excluding SGL) harness identical
datasets, maintaining a consistent partitioning between training
and testing subsets.
Framework outputs. Table 1 displays the accuracy recommenda-
tion performance for the best models’ configurations, considering
top-20 recommendation lists. Hyperparameters used by the authors
of the original papers on their respective datasets were judiciously
chosen to reproduce these results. Nevertheless, the current frame-
work facilitates the exploration of hyperparameter values either
within a grid-delineated space or by employing a strategy that
balances exploration and exploitation, i.e., Tree-structured Parzen
Estimator (TPE).

12https://elliot.readthedocs.io/en/latest/.
13https://www.youtube.com/watch?v=_Bpgf4wnwIU.
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Table 1: Accuracy performance of our six graph-based baselines on Gowalla, Yelp 2018, and Amazon Book. The performance
shift between the original results and the ones measured with our framework are maximum in the magnitude of 10−03.

Datasets Models Ours Original Performance Shift

Recall nDCG Recall nDCG Recall nDCG

Gowalla

NGCF 0.1556 0.1320 0.1569 0.1327 −1.3 · 10−03 −7 · 10−04
DGCF 0.1736 0.1477 0.1794 0.1521 −5.8 · 10−03 −4.4 · 10−03
LightGCN 0.1826 0.1545 0.1830 0.1554 −4 · 10−04 −9 · 10−04
SGL* — — — — — —
UltraGCN 0.1863 0.1580 0.1862 0.1580 +1 · 10−04 0
GFCF 0.1849 0.1518 0.1849 0.1518 0 0

Yelp 2018

NGCF 0.0556 0.0452 0.0579 0.0477 −2.3 · 10−03 −2.5 · 10−03
DGCF 0.0621 0.0505 0.0640 0.0522 −1.9 · 10−03 −1.7 · 10−03
LightGCN 0.0629 0.0516 0.0649 0.0530 −2 · 10−03 −1.4 · 10−03
SGL 0.0669 0.0552 0.0675 0.0555 −6 · 10−04 −3 · 10−04
UltraGCN 0.0672 0.0553 0.0683 0.0561 −1.1 · 10−03 −8 · 10−04
GFCF 0.0697 0.0571 0.0697 0.0571 0 0

Amazon Book

NGCF 0.0319 0.0246 0.0337 0.0261 −1.8 · 10−03 −1.5 · 10−03
DGCF 0.0384 0.0295 0.0399 0.0308 −1.5 · 10−03 −1.3 · 10−03
LightGCN 0.0419 0.0323 0.0411 0.0315 +8 · 10−04 +8 · 10−04
SGL 0.0474 0.0372 0.0478 0.0379 −4 · 10−04 −7 · 10−04
UltraGCN 0.0688 0.0561 0.0681 0.0556 +7 · 10−04 +5 · 10−04
GFCF 0.0710 0.0584 0.0710 0.0584 0 0

*Results are not provided since SGL was not originally trained and tested on Gowalla [19].

4 CONCLUSION
This demonstration shows full experimental flows with six graph
collaborative filtering models in Elliot. Differently from previous
Elliot versions and similar solutions in the literature, we leverage
PyTorch Geometric and address its known reproducibility issues.
Additionally, we propose a novel model categorization that distin-
guishes between explicit and implicit message-passing schema and
takes advantage of Elliot’s hyper-parameter optimization to allow
extended ablation studies. Noteworthy, by dockerizing our applica-
tion, we create an out-of-the-box experimental environment.
Acknowledgment. This work was partially supported by the
following projects: IPZS-PRJ4_IA_NORMATIVO, Codice Pratica
VHRWPD7 – CUP B97I19000980007 – COR 1462424 ERP 4.0, H2020
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