
TpuGraphs: A Performance Prediction Dataset on Large Tensor
Computational Graphs

Phitchaya Mangpo
Phothilimthana
Google DeepMind

USA
mangpo@google.com

Sami Abu-El-Haija
Google Research

USA
haija@google.com

Kaidi Cao
Stanford
USA

kaidicao@cs.stanford.edu

Bahare Fatemi
Google Research

USA
baharef@google.com

Charith Mendis
UIUC
USA

charithm@illinois.edu

Bryan Perozzi
Google Research

USA
bperozzi@google.com

ABSTRACT

Precise hardware performance models play a crucial role in code
optimizations. They can assist compilers in making heuristic deci-
sions or aid autotuners in identifying the optimal configuration for
a given program. For example, the autotuner for XLA, a machine
learning compiler, discovered 10–20% speedup on state-of-the-art
models serving substantial production traffic at Google. Although
there exist a few datasets for program performance prediction, they
target small sub-programs such as basic blocks or kernels. This
paper introduces TpuGraphs, a performance prediction dataset on
full tensor programs, represented as computational graphs, run-
ning on Tensor Processing Units (TPUs). Each graph in the dataset
represents the main computation of a machine learning workload,
e.g., a training epoch or an inference step. Each data sample con-
tains a computational graph, a compilation configuration, and the
execution time of the graph when compiled with the configura-
tion. The graphs in the dataset are collected from open-source
machine learning programs, featuring popular model architectures
(e.g., ResNet, EfficientNet, Mask R-CNN, and Transformer). Tpu-
Graphs provides 25x more graphs than the largest graph property
prediction dataset (with comparable graph sizes), and 770x larger
graphs on average compared to existing performance prediction
datasets on machine learning programs. This graph-level prediction
task on large graphs introduces new challenges in learning, ranging
from scalability, training efficiency, to model quality.

KEYWORDS

datasets, graph neural networks, compilers, execution time

1 INTRODUCTION

Compilers often use performance models to solve optimization
problems [21, 36], as collecting performance measurements from
real hardware can be expensive, limited, or infeasible. A perfor-
mance model can also be used by a compiler autotuner to evaluate

This work is licensed under a Creative Commons Attribution
International 4.0 License.

GLB ’23, August 6, 2023, Long Beach, CA
© 2023 Copyright held by the owner/author(s).

candidate configurations in a search space [1, 11, 29, 41, 42]. How-
ever, developing an accurate analytical model of program perfor-
mance on a modern processor is challenging and time-consuming
because the underlying processor architecture, the compiler, and
their interactions are complex and difficult to model analytically.

Many recent methods [1, 2, 4, 11, 18, 29, 32, 35, 39, 49, 50, 58] ap-
ply machine learning (ML) to learn performance prediction models.
However, there exist only a few datasets for program performance
prediction, and they all target small sub-programs. BHive [12] tar-
gets small basic blocks of assembly instructions. TenSet [60] targets
ML kernels consisting of a small number of tensor operations. The
database query dataset [24] contains larger query programs, but
they are still relatively small, most with fewer than 100 nodes.

Unlike prior datasets, TpuGraphs is a performance prediction
dataset on full tensor programs, represented as computational
graphs. Each graph represents the main computation of an ML
program, which is usually one or many training steps or one infer-
ence step. The graphs in the dataset are collected from open-source
ML programs, featuring popular models (e.g., ResNet, EfficientNet,
Mask R-CNN, and a large variety of Transformer) for a wide range
of tasks (e.g., vision, NLP, speech, audio, recommendation, and gen-
erative AI). Each data sample contains a computational graph, a
compilation configuration, and the execution time when executing
the graph with the given configuration on a Tensor Processing
Unit (TPU) v3 [30], an accelerator for ML workloads. A compilation
configuration controls how the XLA compiler [52] transforms the
graph for a specific optimization pass. In particular, the TpuGraphs
dataset consists of two collections: (i) layout and (ii) tile. Layout con-
figurations control how tensors are laid out in the physical memory,
by specifying the dimension order of each input and output of an
operation node. A tile configuration controls the tile size of each
fused subgraph. We primarily focus on layout and tile configura-
tions because tuning them offers the highest performance gain on
average, compared to tuning other compiler optimizations.

The layout collection contains 31 million pairs of graphs and
configurations, averaging over 7,700 nodes per graph. The tile col-
lection contains 13 millions pairs of kernels and configurations,
averaging 40 nodes per kernel subgraph. The layout collection is
unique among existing graph datasets, in that it provides data for
graph-level predictions on very large graphs. In contrast, most of

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

GLB ’23, August 6, 2023, Long Beach, CA Phothilimthana and Abu-El-Haija, et al.

104 105 106 107 108 109

Number of graphs

101

102

103

104

Av
er

ag
e

nu
m

be
r o

f n
od

es

TpuGraphs
(Layout)

TpuGraphs
(Tile)

TenSet

Database

BHive

AnghaBench

CodeNet

OGBG-CODE2
TBCNN

MalNet

PCBAMUV

OGBG-PPA

Reddit-T

REDDIT-12K
REDDIT-5K

ML program perf
Other program perf

Program analysis
Other

Figure 1: Scale of TpuGraphs compared to other graph prop-

erty prediction datasets.

the existing graph datasets fall into two categories: graph-level pre-
diction on small graphs [3, 9, 11, 26, 26, 51, 53, 60, 61], and node-level
or edge-level prediction on large graphs [7, 10, 22, 27, 37, 57, 62].
TpuGraphs provides 25x more graphs than MalNet [20] — the
largest graph property prediction dataset with comparable graph
sizes — and 770x larger graphs on average compared to TenSet [59]
— the only existing large-sclae ML program performance dataset —
as depicted in Figure 1. The scale of TpuGraphs poses several new
research challenges:

• How to train a neural networkmodel that can perform graph-
level predictions when the memory required to train the
model on a single graph may not fit on a single device?

• How tomake a model generalize well to unseen graphs when
they are diverse, and the training data may be imbalanced?

• How to improve the efficiency of a training pipeline when
multiple data points contain a large amount of redundant
data (same core graph but different graph configurations)?

We provide baseline models based on a Graph Neural Network
(GNN), following the techniques from the most recent works on
TPU learned cost models [8, 32]. We verify that the previously
proposed techniques — such as training on graph segments and
using pairwise ranking loss — are also effective on our dataset. The
dataset and accompanying code can be found at https://github.com/
google-research-datasets/tpu_graphs.

2 THE TPUGRAPHS DATASET

The TpuGraphs dataset contains execution time data points, where
each data point contains an HLO graph, its configuration, and its
execution time on a single core of TPU v3. The HLO graph in
each data point is a partially optimized graph before being fed into
the corresponding optimization pass. For example, in the layout
collection, anHLO graph is the input graph to the layout assignment
pass. The layout configuration of a graph is a collection of per-
node layout decisions on configurable nodes (i.e., convolution and
reshape). For the tile collection, an HLO graph in each data point is
a fused subgraph representing a kernel. The tile configuration of a

subgraph is a configuration for the entire subgraph, not specific to
any particular node.

2.1 Data Generation

Within our dataset, there are multiple collections of data, differing
in terms of (1) the compiler optimization (i.e., layout and tile), (2)
the source of graphs, and (3) the search strategy.

Graphs Collection. We collect HLO graphs from two sources. The
first source, called XLA, is the combination of the XLA regression
benchmark — from where we collect all open-source models —
and the MLPerf benchmark [28, 38]. The XLA graphs span diverse
types of popular ML training and inference models, such as vision,
NLP, speech, audio, and recommendation. The second source, called
NLP, contains a variety of BERT for training and inference, with
varying number of layers, attention heads, and hidden sizes. For
each model, we run the program — written in TensorFlow, PyTorch,
or JAX — and collect the largest HLO graph compiled by XLA,
which represents the model’s main computation. Note that the
TpuGraphs dataset is similar to the internal datasets used for prior
TPU learned cost models [8, 32], but it exclusively contains graphs
from open source-programs, while the internal datasets also include
production models that we cannot release publicly.

Configurations Generation. Once we have the graphs, we use
the XLA autotuner to generate data samples. The set of configu-
rations being generated depends on how the autotuner explores
the search space. For the layout collections, we ran the autotuner
in two modes. The first mode explores the search space using a
genetic algorithm starting from the default configuration, chosen
by the compiler’s heuristic. Data collected from this mode is labeled
default. The second mode explores the search space by picking ran-
dom candidates. Data collected from this mode is labeled random.
We keep data collected in different modes in separate collections;
the default collection tends to contain configurations that are not
too different from the default, and have similar execution times,
while the random collection includes very different configurations
with very different execution times.

For the tile size tuning, the autotuner first invokes the compiler
to run the graph-level optimizations and obtain fused subgraphs
(kernels). For each subgraph, the autotuner enumerates all possible
tile sizes for the kernel in a random order, limited by a timeout.
Note that the tile size search space is much smaller than the layout
search space, so we can enumerate all possible tile sizes. Therefore,
there is one data collection for tile sizes.

Appendix C describes how we measure the execution time of a
given graph and configuration.

2.2 Dataset Statistics

Table 1 summarizes the details of the different data collections,
where the collection name follows the pattern optimization:source:search.

2.3 Dataset Split

We split the data using 80-10-10 ratio by graphs in each collection.
Splitting data by graphs ensures that graphs in the validation and
test sets do not appear in the training set to evaluate the generaliza-
tion of the model on unseen graphs. The validate and test graphs

https://github.com/google-research-datasets/tpu_graphs
https://github.com/google-research-datasets/tpu_graphs

TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs GLB ’23, August 6, 2023, Long Beach, CA

Table 1: Statistics of TpuGraphs collections. The collection name follows the pattern optimization:source:search. The search

may explore the same configuration multiple times, so the same pair of graph and configuration may appear multiple times

with slightly different execution time from multiple measurements. The total number of samples is thus higher than the

number of unique pairs.

Collection
Core

Avg. Nodes Configs per Graph
Total Graphs

Samples
(Sub) Graphs + Configs

Layout:XLA:Default 78 14,105 (372–43,615) 10,147 (681–71,574) 771,496 1,272,538
Layout:XLA:Random 11,648 (109–99,783) 908,561 1,115,709
Layout:NLP:Default 244 5,659 (876–21,919) 56,534 (9032–90,985) 13,285,415 15,479,038
Layout:NLP:Random 66,089 (8,843–100,001) 16,125,781 16,135,731
Tile:XLA 6,988 40 1,842 12,870,077 12,870,077

stay the same across different XLA collections; the same applies
to NLP collections. We deliberately holdout the target labels of
samples in the test set for competition purposes.

3 LEARNED PERFORMANCE PREDICTION

MODEL

The goal of a learned cost model is to rank the performance of
different configurations of a given graph. This section explains the
baseline models we provide and howwe train them, primarily based
on the TPU learned cost model papers [8, 32].

3.1 Feature Extraction

TpuGraphs provides data in two formats: raw protobuf format and
numpy arrays similar to OGBG format [25]. The autotuner produces
output results in protobuf format. A data pre-processing script
converts data from the protobuf format to the numpy format. The
main function of the data pre-processor is feature extraction. Node
features describe the node’s property, such as output tensor shape,
tensor layout, striding, padding, and operation-specific parameters.
Our feature extraction is minimal. To extract a node feature vector,
we either copy values from various fields in an HLO instruction (a
node in an HLO graph) as they are, or convert categorical values
using one-hot encoding. To convert an unbounded list of numbers
(e.g. tensor shape) to a fixed-size vector, we truncate the list to six
elements and include the summation and/or product of all elements
in the list (e.g., the product of dimension sizes represents the volume
of the tensor). A per-node layout configuration and tile size can
be represented as a nested list with some unbounded dimensions.
Similarly, we truncate these unbounded dimensions to six elements.

We provide code for training a variety of models over the numpy
format. Nonetheless, the raw format can allow researchers to ex-
periment with different feature extractions and measure impacts
on the quality of a learned model.

3.2 Model Architecture

Figure 2 shows the model architecture we use for our baseline
models. Our baseline models are based on a GNN since the input
program is represented as a graph. Node features consist of two
parts as shown in Figure 2. The first part is an opcode id, i.e., type
of tensor operation (such as matrix multiplication). Our baseline
models map an opcode id to an opcode embedding via an embedding
lookup table. The opcode embedding is then concatenated with
the rest of the node features as inputs to a GNN. We combine the

GNN

embed
opcode

opcode
ids

opcode
embeddings

node feats

node
embeddings

||

||

reduction ∑

feedforward

graph
embedding

runtime
prediction

||

adjacency
matrix

Please keep red, blue, yellow colors
as we refer to them in the paper.

per-node
config feats
(early-join)

graph
config feats
(late-join)

Figure 2: Model architecture.

node embeddings produced by the GNN to create the embedding
of the graph using a simple pooling reduction. The resulting graph
embedding is then linearly transformed into the final scalar output
by a feedforward layer. Prior work [32] has studied alternative
models, including LSTM and Transform, and shown that GNNs offer
the best performance. We provide baseline models with GCN [33]
and GraphSAGE [23].

3.3 Loss Functions and Evaluation Metrics

The primary use case of the model is to rank configurations within a
given graph and select top candidates to evaluate on real hardware.
Thus, we can train the model using regression losses (e.g., Mean
Square Error (MSE)) or ranking losses (e.g., ListMLE [54]). A ranking
loss is computed among sample pairs within the same graph in the
same batch, and the losses from different graphs in the batch are
reduced to get the total loss. We use Ordered Pair Accuracy (OPA)
as a validation metric to select the best model checkpoint, and
top-K error as an evaluation metric as they evaluate the quality
of ranking. We define a top-K error to reflect how much slower
the top-K configurations predicted by the model is from the actual
fastest configuration as follows:

Best runtime of the top-k predictions
Best runtime of all configurations

− 1 =
min𝑖∈𝐾 𝑦𝑖
min𝑖∈𝐴 𝑦𝑖

− 1 (1)

GLB ’23, August 6, 2023, Long Beach, CA Phothilimthana and Abu-El-Haija, et al.

where𝐾 is the top-K predictions,𝐴 is all configurations of the given
graph from the dataset collection, and 𝑦 is the measured time.

3.4 Implementation

Layout model. Our default baseline model is a 3-layer Graph-
SAGE. We concatenate node features and per-node configuration
features as inputs to the GNN. If a node is non-configurable (having
no layout configuration), we use a zero vector as configuration
features. To address the memory issue when training on the full
program graphs in the layout dataset, we apply the Graph Segment
Training (GST) method [8]. GST divides large graphs into smaller
segments. During training, a random segment is chosen for model
updates at each step. This approach allows us to store intermediate
activations for only one segment during backpropagation. The em-
beddings of all segments are merged to generate an embedding for
the original large graph, which is used for prediction. As a result,
the memory usage during training is bounded for each large graph,
irrespective of its size. By default, we use the maximum segment
size of 1,000 nodes and the keep probability 𝑝 = 0.5 for the stale
embedding dropout. We consider MSE and pairwise hinge loss as a
loss function. Model training takes approximately 2–3 days on a
single NVIDIA A100 GPU with 80GB HBM2e Memory. The baseline
models are implemented using the GraphGPS framework [44] on
top of PyTorch 1.10.

Tile size model. For the tile collection, we implement three base-
lines using TensorFlow-2 and TF-GNN: an MLP model and two
GNNs (GraphSAGE and GCN with residual connections). The MLP
model embeds all opcodes, concatenates with node features, sums
across all nodes, then concatenates with kernel configuration fea-
tures, feeding into 3-layer MLP. The GNN variants follow Figure 2.
We experiment with two options to combine the graph-level fea-
tures with the node-level information (orange in the figure): either
late-join or early-join. The first runs the GNN only on node fea-
tures, reduces the node embeddings, and then concatenates with
the graph (configuration) features. As such, multiple configurations
over the same graph share the forward and backward pass. The
second replicates the graph features onto every node. Here, we
group configurations per graph and therefore execute sparse-ops
only once per graph (on cube-tensors rather than matrices). We
consider MSE and ListMLE as a loss function. These models take
a few minutes (MLP), to less than an hour (late-join GNN), to a
couple of hours (early-join GNN), to train on Intel Xeon CPUs.

4 BASELINE EXPERIMENTS

Table 2 reports the average top-K error of the best model on across
programs all the dataset collections. The Layout:XLA:Random and
Layout:NLP:Random are by far the most difficult collections. If we
use the learned cost model to select the top configuration, we will
be on average 24–25% slower than the known optimal configuration.
Even if we consider top 10 candidates, we will still be on average 8–
10% off. This is likely because the configurations from the random
search are very different from each other. Even when the NLP
collection contains only graphs with the transformer architecture,
the best learned model still has relatively low accuracy on the
random search collections.

Table 2: Prediction errors (Eq. 1) of our best baseline model

on different dataset collections. The values of (𝐾1,𝐾2,𝐾3) are
(1, 10, 100) for the layout collections, and (1, 5, 10) for the tile

collection.

Collection Top-𝐾1 Error % Top-𝐾2 Error % Top-𝐾3 Error %

Val Test Val Test Val Test

Layout:XLA:Random 24.3 25.3 6.4 10.4 0.4 1.2
Layout:XLA:Default 1.7 1.6 0.5 0.5 0.1 0.1
Layout:NLP:Random 23.7 24.5 7.4 8.0 1.8 2.7
Layout:NLP:Default 2.3 3.0 0.2 0.2 0.1 0.1
Tile:XLA 10.5 10.8 3.9 3.4 2.7 2.1

Table 3: Prediction errors (%) of differentmodel variants and

training methods on the Layout:XLA:Random collection.

Model Top-1 E Top-10 E Top-100 E

Val Test Val Test Val Test

Best 24.3 25.3 6.4 10.4 0.4 1.2
Full Graph 34.3 39.6 11.5 14.9 0.7 2.6
Small Segment 37.9 47.3 13.3 17.9 1.4 3.5
Topo Partition 27.5 27.1 6.5 10.1 0.6 1.5
Fewer Layers 26.9 28.2 7.9 12.5 0.7 1.7
MSE loss 42.7 53.1 12.6 18.8 1.6 3.8
Random 58.1 90.5 15.7 20.6 1.8 3.6

EarlySAGE EarlyGCN LateSAGE LateGCN MLP0

10

20

30

40

50

60

To
p-

5
Er

ro
r %

val
test
MSE
ListMLE

Figure 3: Prediction errors (%) of different model variants

on the Tile:XLA collection. Early and Late refer to early-join
and late-join options.

In contrast, Layout:XLA:Default and Layout:NLP:Default are
much easier than the random collections. This is expected because
configurations generated from a genetic algorithm starting from the
default configuration should have relatively similar performance
to the default configuration’s. However, the learned model is not
always accurate on all graphs. If we look at the model’s accuracy
per each graph (program), the top-1 error ranges between 0–9%.

On the Tile:XLA collection, the average top-1 error of the best
model is very similar to the original TPU learned cost model paper’s
[32]. Note that our dataset is not exactly the same as the internal
dataset used in the original paper, but they share a large number of
overlapping graphs.

TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs GLB ’23, August 6, 2023, Long Beach, CA

REFERENCES

[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, and Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with Tree
Search and Random Programs. ACM Trans. Graph. 38, 4, Article 121 (July 2019),
12 pages. https://doi.org/10.1145/3306346.3322967

[2] Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Es-
maeilzadeh. 2020. Chameleon: Adaptive Code Optimization for Expedited Deep
Neural Network Compilation. In International Conference on Learning Represen-
tations.

[3] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine
learning models of code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. 143–153.

[4] Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel
Abdous, TahaArbaoui, Karima Benatchba, and SamanAmarasinghe. 2021. ADeep
Learning Based Cost Model for Automatic Code Optimization. In Proceedings of
MLSys.

[5] Scott Beamer, Krste Asanović, and David Patterson. 2017. The GAP Benchmark
Suite. arXiv:1508.03619 [cs.DC]

[6] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural
Code Comprehension: A Learnable Representation of Code Semantics. In Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY,
USA, 3589–3601.

[7] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin
Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling graph neural networks with approximate pagerank. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2464–2473.

[8] Kaidi Cao, Phitchaya Mangpo Phothilimthana, Sami Abu-El-Haija, Dustin
Zelle, Yanqi Zhou, Charith Mendis, Jure Leskovec, and Bryan Perozzi. 2023.
Learning Large Graph Property Prediction via Graph Segment Training.
arXiv:2305.12322 [cs.LG]

[9] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Mur-
phy. 2022. Machine learning on graphs: A model and comprehensive taxonomy.
Journal of Machine Learning Research 23, 89 (2022), 1–64.

[10] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations.

[11] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize
Tensor Programs. In Proceedings of the 32nd International Conference on Neural In-
formation Processing Systems (Montréal, Canada) (NeurIPS’18). Curran Associates
Inc., Red Hook, NY, USA, 3393–3404.

[12] Y. Chen, A. Brahmakshatriya, C. Mendis, A. Renda, E. Atkinson, O. Sykora, S.
Amarasinghe, and M. Carbin. 2019. BHive: A Benchmark Suite and Measurement
Framework for Validating x86-64 Basic Block Performance Models. In 2019 IEEE
International Symposium on Workload Characterization (IISWC). IEEE Computer
Society, Los Alamitos, CA, USA, 167–177. https://doi.org/10.1109/IISWC47752.
2019.9042166

[13] Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, and Hugh
Leather. 2020. ProGraML: Graph-based Deep Learning for Program Optimization
and Analysis. arXiv:2003.10536 [cs.LG]

[14] Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir
Gomez, Somya Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, Yuandong Tian, and
Hugh Leather. 2022. CompilerGym: Robust, Performant Compiler Optimization
Environments for AI Research. In CGO.

[15] Anderson Faustino da Silva, Bruno Conde Kind, José Wesley de Souza Magalhães,
Jerônimo Nunes Rocha, Breno Campos Ferreira Guimarães, and Fernando Magno
Quinão Pereira. 2021. ANGHABENCH: A Suite with One Million Compilable C
Benchmarks for Code-Size Reduction. In 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). 378–390. https://doi.org/10.1109/
CGO51591.2021.9370322

[16] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun.
2020. The Graph Based Benchmark Suite (GBBS). In Proceedings of the 3rd Joint
International Workshop on Graph Data Management Experiences amp; Systems
(GRADES) and Network Data Analytics (NDA) (Portland, OR, USA) (GRADES-
NDA’20). Association for Computing Machinery, New York, NY, USA, Article 11,
8 pages. https://doi.org/10.1145/3398682.3399168

[17] Paul D. Dobson and Andrew J. Doig. 2003. Distinguishing Enzyme Structures
from Non-enzymes Without Alignments. Journal of Molecular Biology 330, 4
(2003), 771–783. https://doi.org/10.1016/S0022-2836(03)00628-4

[18] Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin, Michael F.P.
O’Boyle, and Olivier Temam. 2007. Fast Compiler Optimisation Evaluation
Using Code-Feature Based Performance Prediction. In Proceedings of the 4th
International Conference on Computing Frontiers (CF ’07).

[19] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, Online, 1536–1547. https://doi.org/10.18653/v1/2020.findings-
emnlp.139

[20] Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. 2021. A Large-
Scale Database for Graph Representation Learning. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 1).

[21] GCC. 2019. Auto-Vectorization in GCC.
https://www.gnu.org/software/gcc/projects/tree-ssa/vectorization.html.
[Online; last modified 18-August-2019].

[22] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[23] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems.

[24] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for out-of-
the-Box Learned Cost Prediction. 15, 11 (jul 2022), 2361–2374. https://doi.org/
10.14778/3551793.3551799

[25] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure
Leskovec. 2021. OGB-LSC: A Large-Scale Challenge for Machine Learning
on Graphs. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

[26] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[27] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive sam-
pling towards fast graph representation learning. Advances in neural information
processing systems 31 (2018).

[28] Vijay Janapa Reddi, David Kanter, Peter Mattson, Jared Duke, Thai Nguyen,
Ramesh Chukka, Ken Shiring, Koan-Sin Tan, Mark Charlebois, William Chou,
Mostafa El-Khamy, Jungwook Hong, Tom St John, Cindy Trinh, Michael Buch,
Mark Mazumder, Relja Markovic, Thomas Atta, Fatih Cakir, Masoud Charkhabi,
Xiaodong Chen, Cheng-Ming Chiang, Dave Dexter, Terry Heo, Guenther
Schmuelling, Maryam Shabani, and Dylan Zika. 2022. MLPerf Mobile Inference
Benchmark: An Industry-Standard Open-Source Machine Learning Benchmark
for On-Device AI. In Proceedings of Machine Learning and Systems, D. Marculescu,
Y. Chi, and C. Wu (Eds.), Vol. 4. 352–369. https://proceedings.mlsys.org/paper_
files/paper/2022/file/7eabe3a1649ffa2b3ff8c02ebfd5659f-Paper.pdf

[29] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving
the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc.
In Proceedings of MLSys Conference, I. Dhillon, D. Papailiopoulos, and V. Sze (Eds.),
Vol. 2. 187–198.

[30] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James
Laudon, Cliff Young, and David Patterson. 2020. A Domain-Specific Supercom-
puter for Training Deep Neural Networks. Commun. ACM 63, 7 (June 2020),
67–78. https://doi.org/10.1145/3360307

[31] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020.
Learning and Evaluating Contextual Embedding of Source Code. In Proceedings
of the 37th International Conference on Machine Learning (ICML’20). JMLR.org,
Article 474, 12 pages.

[32] Samuel J. Kaufman, Phitchaya Mangpo Phothilimthana, Yanqi Zhou, Charith
Mendis, Sudip Roy, Amit Sabne, and Mike Burrows. 2021. A Learned Performance
Model for Tensor Processing Units. In Proceedings of Machine Learning and
Systems. arXiv:2008.01040 [cs.PF]

[33] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. (2016).

[34] Scott P. Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David, Timothy A.
Davis, MatthewHenderson, Yifan Hu, and Read Sandstrom. 2019. The SuiteSparse
Matrix Collection Website Interface. Journal of Open Source Software 4, 35 (2019),
1244. https://doi.org/10.21105/joss.01244

[35] Menghao Li, Minjia Zhang, Chi Wang, and Mingqin Li. 2020. AdaTune: Adap-
tive Tensor Program Compilation Made Efficient. In 34th Conference on Neural
Information Processing Systems (NeurIPS’20).

[36] LLVM. [n. d.]. Auto-Vectorization in LLVM. https://bcain-
llvm.readthedocs.io/projects/llvm/en/latest/Vectorizers. [Online; accessed
03-Feb-2020].

[37] Elan Sopher Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami
Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, and Aram Galstyan. 2021. Graph
Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning. In
International Conference on Learning Representations.

[38] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micike-
vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,
David Brooks, Dehao Chen, Debo Dutta, Udit Gupta, Kim Hazelwood, Andy
Hock, Xinyuan Huang, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao,

https://doi.org/10.1145/3306346.3322967
https://arxiv.org/abs/1508.03619
https://arxiv.org/abs/2305.12322
https://doi.org/10.1109/IISWC47752.2019.9042166
https://doi.org/10.1109/IISWC47752.2019.9042166
https://arxiv.org/abs/2003.10536
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1145/3398682.3399168
https://doi.org/10.1016/S0022-2836(03)00628-4
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.14778/3551793.3551799
https://doi.org/10.14778/3551793.3551799
https://proceedings.mlsys.org/paper_files/paper/2022/file/7eabe3a1649ffa2b3ff8c02ebfd5659f-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/7eabe3a1649ffa2b3ff8c02ebfd5659f-Paper.pdf
https://doi.org/10.1145/3360307
https://arxiv.org/abs/2008.01040
https://doi.org/10.21105/joss.01244

GLB ’23, August 6, 2023, Long Beach, CA Phothilimthana and Abu-El-Haija, et al.

Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost,
Vijay Janapa Reddi, Taylor Robie, Tom St John, Carole-Jean Wu, Lingjie Xu,
Cliff Young, and Matei Zaharia. 2020. MLPerf Training Benchmark. In Proceed-
ings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze
(Eds.), Vol. 2. 336–349. https://proceedings.mlsys.org/paper_files/paper/2020/
file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf

[39] Charith Mendis, Alex Renda, Saman P. Amarasinghe, and Michael Carbin. 2019.
Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using
Deep Neural Networks. In Proceedings of the 36th International Conference on
Machine Learning, ICML.

[40] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neural
Networks over Tree Structures for Programming Language Processing (AAAI’16).
AAAI Press, 1287–1293.

[41] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019.
PipeDream: Generalized Pipeline Parallelism for DNN Training. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA,
1–15. https://doi.org/10.1145/3341301.3359646

[42] Phitchaya Mangpo Phothilimthana, Amit Sabne, Nikhil Sarda, Karthik Srinivasa
Murthy, Yanqi Zhou, Christof Angermueller, Mike Burrows, Sudip Roy, Ketan
Mandke, Rezsa Farahani, Yu Emma Wang, Berkin Ilbeyi, Blake Hechtman, Bjarke
Roune, Shen Wang, Yuanzhong Xu, and Samuel J. Kaufman. 2021. A Flexible
Approach to Autotuning Multi-Pass Machine Learning Compilers. In 2021 30th
International Conference on Parallel Architectures and Compilation Techniques
(PACT). 1–16. https://doi.org/10.1109/PACT52795.2021.00008

[43] Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan
Malaika, and Frederick Reiss. 2021. CodeNet: A Large-Scale AI for Code Dataset
for Learning a Diversity of Coding Tasks. arXiv:2105.12655 [cs.SE]

[44] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy
Wolf, and Dominique Beaini. 2022. Recipe for a General, Powerful, Scalable
Graph Transformer. arXiv preprint arXiv:2205.12454 (2022).

[45] Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Konerd-
ing, and Vijay Pande. 2015. Massively Multitask Networks for Drug Discovery.
arXiv:1502.02072 (02 2015).

[46] Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. Probabilistic Model
for Code with Decision Trees. SIGPLAN Not. 51, 10 (oct 2016), 731–747. https:
//doi.org/10.1145/3022671.2984041

[47] Sebastian G. Rohrer and Knut Baumann. 2009. Maximum Unbiased Validation
(MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data.
Journal of Chemical Information and Modeling 49, 2 (2009), 169–184. https:
//doi.org/10.1021/ci8002649 PMID: 19161251.

[48] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Karate Club: An
API Oriented Open-Source Python Framework for Unsupervised Learning on
Graphs (CIKM ’20). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3340531.3412757

[49] Benoit Steiner, Chris Cummins, Horace He, and Hugh Leather. 2021. Value Learn-
ing for Throughput Optimization of Deep Learning Workloads. In Proceedings of
MLSys Conference.

[50] O. Sykora, P. Phothilimthana, C. Mendis, and A. Yazdanbakhsh. 2022. GRANITE:
A Graph Neural Network Model for Basic Block Throughput Estimation. In
2022 IEEE International Symposium on Workload Characterization (IISWC). IEEE
Computer Society, Los Alamitos, CA, USA, 14–26. https://doi.org/10.1109/
IISWC55918.2022.00012

[51] Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, StefanWyder,
Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris,
Peer Bork, et al. 2019. STRING v11: protein–protein association networks with in-
creased coverage, supporting functional discovery in genome-wide experimental
datasets. Nucleic acids research 47, D1 (2019), D607–D613.

[52] TensorFlow. [n. d.]. XLA: Optimizing Compiler for TensorFlow.
https://www.tensorflow.org/xla. [Online; accessed 19-September-2019].

[53] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-
niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a
benchmark for molecular machine learning. Chemical science 9, 2 (2018), 513–530.

[54] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
Approach to Learning to Rank: Theory and Algorithm. In Proceedings of the
25th International Conference on Machine Learning (Helsinki, Finland) (ICML
’08). Association for Computing Machinery, New York, NY, USA, 1192–1199.
https://doi.org/10.1145/1390156.1390306

[55] Pinar Yanardag and S.V.N. Vishwanathan. 2015. Deep Graph Kernels (KDD ’15).
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/2783258.2783417

[56] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (San Jose, Cali-
fornia, USA) (PLDI ’11). Association for Computing Machinery, New York, NY,

USA, 283–294. https://doi.org/10.1145/1993498.1993532
[57] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. 2019. GraphSAINT: Graph Sampling Based Inductive Learning Method.
In International Conference on Learning Representations.

[58] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,
and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs
for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’20). USENIX Association, 863–879.

[59] Lianmin Zheng, Ruochen Liu, Junru Shao, Tianqi Chen, Joseph Gonzalez, Ion Sto-
ica, andAmeer Haj-Ali. 2021. TenSet: A Large-scale Program Performance Dataset
for Learned Tensor Compilers. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks, J. Vanschoren and S. Yeung (Eds.),
Vol. 1. Curran. https://datasets-benchmarks-proceedings.neurips.cc/paper_files/
paper/2021/file/a684eceee76fc522773286a895bc8436-Paper-round1.pdf

[60] Lianmin Zheng, Ruochen Liu, Junru Shao, Tianqi Chen, Joseph E. Gonzalez,
Ion Stoica, and Ameer Haj Ali. 2021. TenSet: A Large-scale Program Perfor-
mance Dataset for Learned Tensor Compilers. In Thirty-fifth Conference on Neu-
ral Information Processing Systems Datasets and Benchmarks Track (Round 1).
https://openreview.net/forum?id=aIfp8kLuvc9

[61] Marinka Zitnik, Rok Sosič, MarcusWFeldman, and Jure Leskovec. 2019. Evolution
of resilience in protein interactomes across the tree of life. Proceedings of the
National Academy of Sciences 116, 10 (2019), 4426–4433.

[62] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-dependent importance sampling for training deep and large graph
convolutional networks. Advances in neural information processing systems 32
(2019).

https://proceedings.mlsys.org/paper_files/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1109/PACT52795.2021.00008
https://arxiv.org/abs/2105.12655
https://doi.org/10.1145/3022671.2984041
https://doi.org/10.1145/3022671.2984041
https://doi.org/10.1021/ci8002649
https://doi.org/10.1021/ci8002649
https://doi.org/10.1145/3340531.3412757
https://doi.org/10.1109/IISWC55918.2022.00012
https://doi.org/10.1109/IISWC55918.2022.00012
https://doi.org/10.1145/1390156.1390306
https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/1993498.1993532
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a684eceee76fc522773286a895bc8436-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a684eceee76fc522773286a895bc8436-Paper-round1.pdf
https://openreview.net/forum?id=aIfp8kLuvc9

TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs GLB ’23, August 6, 2023, Long Beach, CA

A RELATED DATASETS

Table 4 compares related datasets.

ML Program Performance. The TpuGraphs layout collections
provide more than 770x larger graphs on average compared to
TenSet [59], the only existing large-scale dataset on ML program
performance. Our tile size collection is similar to TenSet as the con-
figuration controls the optimization at the kernel (fused subgraph)
level. However, it compliments TenSet nicely as it provides data
points on different hardware. Halide Auto-scheduler [1] releases
their evaluation dataset of Halide programs mainly consisting of
image processing benchmarks with a few ML benchmarks.

Other Program Performance. Beyond ML programs, the perfor-
mance prediction dataset with largest graphs is on database queries
[24], whose graphs are still more than a few orders of magnitudes
smaller than ours. Another popular performance prediction dataset
is BHive [12], consisting of x86 basic blocks sourced from multiple
open source programs, with runtime measurements on different
Intel hardware platforms. However, the basic blocks are quite small,
including four instructions on average. CompilerGym [14] releases
a collection of LLVM IR code datasets that can be evaluated in
their environment. The largest datasets in their collection includes
AnghaBench [15] and CSmith [56]. AnghaBench provides a large
number of relatively small real-world programs. CSmith programs
are large (comparable to ours), but they are randomly generated
programs. Additionally, CompilerGym’s datasets do not come with
performance measurements, so one would have to execute the
programs and configurations in the CompilerGym’s environment
themselves to obtain program execution time.

Program Analysis. Other closely related datasets are on program-
ming tasks. CodeNet [43] is a large dataset to teach AI to code, in
which each code sample is a solution to one of the coding prob-
lems. OBGB-CODE2 [25] is for code summarization, containing
Abstract Syntax Trees obtained from Python functions. TBCNN [40]
releases its dataset on program classification from a pedagogical
programming open judge system. CuBERT [31] uses Python files
extracted from the ETH Py150 dataset [46] for fine-tuning and
uses github_repos dataset under BigQuery’s public-data project
for pre-training. CodeBERT [19] releases its multi-programming-
lingual dataset used for pre-training. Works such as inst2vec [6]
and ProGraML [13] uses datasets of code in LLVM compiler inter-
mediate representation to learn generic code representation for
various program analyses and optimizations.

Other. Apart from code datasets, there are many other graph
datasets. Open Graph Benchmark [25] suite presents graphs that
are used for machine learning tasks such as GNN inference and
training. GAP [5] and Graph Based Benchmark Suite (GBBS) [16]
provide large-scale curated sets of graphs, primarily for evaluating
traditional graph problems. SuiteSparse [34] consists of a wide
variety of sparse matrices, which can be viewed as graphs. Most
of these datasets are for node-level or edge-level prediction tasks.
TpuGraphs is by far one of the largest graph property prediction
datasets. TpuGraphs’ average graph size is comparable to that of
MalNet [20] — the largest scale graph property prediction dataset
to date — while offering 25x more combinations of graphs and

configurations. Other popular graph property prediction datasets
include small molecule [45, 47], bioinformatic [17, 25], and social
network datasets [48, 55].

B EVALUATION RESULTS

B.1 Ablation Study on Layout Collection

Table 3 compares alternative choices in terms of the model architec-
ture and the training method on the Layout:XLA:Random collection.
Our results agree with the results from the prior paper [8] that the
quality of the model improves significantly with the Graph Seg-
ment Training method (Best) over a typical full graph training (Full
Graph), as GST potentially introduces a better hierarchical graph
pooling mechanism that leads to better generalization. Note that
since an A100 GPU has plenty of memory, training on full graphs
does not run out of memory, but one would encounter the prob-
lem when running on a smaller device. Similar to the prior paper,
we also show that the quality of the model drops when the graph
segment size is too small. Here, we compare segment sizes of 100
(Smaller Segment) and 1,000 (Best). Using fewer GNN layers (2 lay-
ers), however, does not affect the accuracy significantly compared
to the best model (3 layers). The choice of a partition algorithm
also does not matter so much, where we compare METIS (Best)
and random cutting from topological sort (Topo Partition) because
our graphs are sparely connected. Another crucial factor is the loss
function, where using pairwise hinge loss (Best) is significantly
better than using Mean Squared Error (MSE), similar to the finding
in the original TPU learned cost model paper [32]. Additionally, we
compare our baseline models with a random model that selects K
candidates at random, and show that all of the learned cost models
are better than random.

B.2 Ablation Study on Tile Size Collection

Figure 3 compares alternative choices on the tile size collection.
Similar to the prior work [32], our results show that combining
configuration features with node features early (early-join) is supe-
rior than combining configuration features with a reduced graph
embedding later (late-join). Similar to the layout collection, using
a ranking loss (ListMLE) is much more effective than using MSE.
Additionally, we compare the choice of a GNN between GraphSAGE
and GCN, and find that GraphSAGE is slightly better than GCN on
this dataset collection. We also provide an MLP baseline without a
GNN, and confirm that a GNN is essential to achieve good accuracy.

C EXECUTION TIME MEASUREMENT

Wemeasure the execution of a compiled binary on a single TPU chip
using random input data. Note that some of the graphs in the layout
collection must be run on multiple TPU chips. However, doing so
is not economically viable for autotuning a large number of models
and generating the dataset. Therefore, the autotuner modifies the
final optimized graph (after all graph-level optimizations) to make
it runnable on a single TPU chip in two ways. First, we replace
each collective communication operation such as all-reduce and all-
gather with a no-op that simply allocates the right amount of output
buffer (with undefined values). This means the measured execution
time ignores the time taken by collective operations. We think this
is reasonable because layout decisions rarely affect the execution

GLB ’23, August 6, 2023, Long Beach, CA Phothilimthana and Abu-El-Haija, et al.

Table 4: Comparison of TpuGraphs properties with other large-scale graph property prediction datasets. * provide only pro-

grams, but one may use them in CompilerGym [14] environment to obtain performance measurements when compiling with

specific configurations.
†
provides randomly generated programs.

Application Dataset Graphs (+ Configs) Avg. Nodes

ML Program Perf TpuGraphs (Layout) 31,091,253 7,705
TpuGraphs (Tile) 12,870,077 40
TenSet [59] 51,577,248 5–10

Other Program Perf Database [24] 300,000 < 100
BHive [12] 330,018 4
AnghaBench* [15] 1,041,333 62
CSmith*† [56] 530,000 5,845

Program Analysis CodeNet [19] 13,916,868 200–500
OGBG-CODE2 [25] 452,741 125
TBCNN [40] 52,000 190

Cybersecurity MalNet [20] 1,262,024 15,378
Molecule PCBA [45] 437,929 26

MUV [47] 93,087 24
Bioinfomatic DD [17] 1,178 284

OGBG-PPA [25] 158,100 243
Social Network Reddit-T [48] 203,088 24

REDDIT-12K [55] 11,929 391
REDDIT-5K [55] 4,999 509

time of collective operations. The use of random or undefined data
does not affect the execution time of a compute operation, such
as convolution, because the timing does not depend on the input
data. The second modification we perform is to replace dynamic
loop bounds with a fixed loop bounds. Without such replacement,
a dynamic loop bound may depend on random input data, result-
ing in an extremely large loop bound, making the program run

unrealistically slowly. Because of these modifications, our absolute
execution time measurement may be inaccurate in some cases, but
it has been used in production to tune graph-level optimizations
and deliver large speedups on many important models. Therefore,
we believe it is reasonable to use the execution time measured by
the approach outlined here as a prediction target.

	Abstract
	1 Introduction
	2 The TpuGraphs Dataset
	2.1 Data Generation
	2.2 Dataset Statistics
	2.3 Dataset Split

	3 Learned Performance Prediction Model
	3.1 Feature Extraction
	3.2 Model Architecture
	3.3 Loss Functions and Evaluation Metrics
	3.4 Implementation

	4 Baseline Experiments
	References
	A Related Datasets
	B Evaluation Results
	B.1 Ablation Study on Layout Collection
	B.2 Ablation Study on Tile Size Collection

	C Execution Time Measurement

