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ABSTRACT

Precise hardware performance models play a crucial role in code
optimizations. They can assist compilers in making heuristic deci-
sions or aid autotuners in identifying the optimal configuration for
a given program. For example, the autotuner for XLA, a machine
learning compiler, discovered 10–20% speedup on state-of-the-art
models serving substantial production traffic at Google. Although
there exist a few datasets for program performance prediction, they
target small sub-programs such as basic blocks or kernels. This
paper introduces TpuGraphs, a performance prediction dataset on
full tensor programs, represented as computational graphs, run-
ning on Tensor Processing Units (TPUs). Each graph in the dataset
represents the main computation of a machine learning workload,
e.g., a training epoch or an inference step. Each data sample con-
tains a computational graph, a compilation configuration, and the
execution time of the graph when compiled with the configura-
tion. The graphs in the dataset are collected from open-source
machine learning programs, featuring popular model architectures
(e.g., ResNet, EfficientNet, Mask R-CNN, and Transformer). Tpu-
Graphs provides 25x more graphs than the largest graph property
prediction dataset (with comparable graph sizes), and 770x larger
graphs on average compared to existing performance prediction
datasets on machine learning programs. This graph-level prediction
task on large graphs introduces new challenges in learning, ranging
from scalability, training efficiency, to model quality.
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1 INTRODUCTION

Compilers often use performance models to solve optimization
problems [21, 36], as collecting performance measurements from
real hardware can be expensive, limited, or infeasible. A perfor-
mance model can also be used by a compiler autotuner to evaluate
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candidate configurations in a search space [1, 11, 29, 41, 42]. How-
ever, developing an accurate analytical model of program perfor-
mance on a modern processor is challenging and time-consuming
because the underlying processor architecture, the compiler, and
their interactions are complex and difficult to model analytically.

Many recent methods [1, 2, 4, 11, 18, 29, 32, 35, 39, 49, 50, 58] ap-
ply machine learning (ML) to learn performance prediction models.
However, there exist only a few datasets for program performance
prediction, and they all target small sub-programs. BHive [12] tar-
gets small basic blocks of assembly instructions. TenSet [60] targets
ML kernels consisting of a small number of tensor operations. The
database query dataset [24] contains larger query programs, but
they are still relatively small, most with fewer than 100 nodes.

Unlike prior datasets, TpuGraphs is a performance prediction
dataset on full tensor programs, represented as computational
graphs. Each graph represents the main computation of an ML
program, which is usually one or many training steps or one infer-
ence step. The graphs in the dataset are collected from open-source
ML programs, featuring popular models (e.g., ResNet, EfficientNet,
Mask R-CNN, and a large variety of Transformer) for a wide range
of tasks (e.g., vision, NLP, speech, audio, recommendation, and gen-
erative AI). Each data sample contains a computational graph, a
compilation configuration, and the execution time when executing
the graph with the given configuration on a Tensor Processing
Unit (TPU) v3 [30], an accelerator for ML workloads. A compilation
configuration controls how the XLA compiler [52] transforms the
graph for a specific optimization pass. In particular, the TpuGraphs
dataset consists of two collections: (i) layout and (ii) tile. Layout con-
figurations control how tensors are laid out in the physical memory,
by specifying the dimension order of each input and output of an
operation node. A tile configuration controls the tile size of each
fused subgraph. We primarily focus on layout and tile configura-
tions because tuning them offers the highest performance gain on
average, compared to tuning other compiler optimizations.

The layout collection contains 31 million pairs of graphs and
configurations, averaging over 7,700 nodes per graph. The tile col-
lection contains 13 millions pairs of kernels and configurations,
averaging 40 nodes per kernel subgraph. The layout collection is
unique among existing graph datasets, in that it provides data for
graph-level predictions on very large graphs. In contrast, most of
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Figure 1: Scale of TpuGraphs compared to other graph prop-

erty prediction datasets.

the existing graph datasets fall into two categories: graph-level pre-
diction on small graphs [3, 9, 11, 26, 26, 51, 53, 60, 61], and node-level
or edge-level prediction on large graphs [7, 10, 22, 27, 37, 57, 62].
TpuGraphs provides 25x more graphs than MalNet [20] — the
largest graph property prediction dataset with comparable graph
sizes — and 770x larger graphs on average compared to TenSet [59]
— the only existing large-sclae ML program performance dataset —
as depicted in Figure 1. The scale of TpuGraphs poses several new
research challenges:

• How to train a neural networkmodel that can perform graph-
level predictions when the memory required to train the
model on a single graph may not fit on a single device?

• How tomake a model generalize well to unseen graphs when
they are diverse, and the training data may be imbalanced?

• How to improve the efficiency of a training pipeline when
multiple data points contain a large amount of redundant
data (same core graph but different graph configurations)?

We provide baseline models based on a Graph Neural Network
(GNN), following the techniques from the most recent works on
TPU learned cost models [8, 32]. We verify that the previously
proposed techniques — such as training on graph segments and
using pairwise ranking loss — are also effective on our dataset. The
dataset and accompanying code can be found at https://github.com/
google-research-datasets/tpu_graphs.

2 THE TPUGRAPHS DATASET

The TpuGraphs dataset contains execution time data points, where
each data point contains an HLO graph, its configuration, and its
execution time on a single core of TPU v3. The HLO graph in
each data point is a partially optimized graph before being fed into
the corresponding optimization pass. For example, in the layout
collection, anHLO graph is the input graph to the layout assignment
pass. The layout configuration of a graph is a collection of per-
node layout decisions on configurable nodes (i.e., convolution and
reshape). For the tile collection, an HLO graph in each data point is
a fused subgraph representing a kernel. The tile configuration of a

subgraph is a configuration for the entire subgraph, not specific to
any particular node.

2.1 Data Generation

Within our dataset, there are multiple collections of data, differing
in terms of (1) the compiler optimization (i.e., layout and tile), (2)
the source of graphs, and (3) the search strategy.

Graphs Collection. We collect HLO graphs from two sources. The
first source, called XLA, is the combination of the XLA regression
benchmark — from where we collect all open-source models —
and the MLPerf benchmark [28, 38]. The XLA graphs span diverse
types of popular ML training and inference models, such as vision,
NLP, speech, audio, and recommendation. The second source, called
NLP, contains a variety of BERT for training and inference, with
varying number of layers, attention heads, and hidden sizes. For
each model, we run the program — written in TensorFlow, PyTorch,
or JAX — and collect the largest HLO graph compiled by XLA,
which represents the model’s main computation. Note that the
TpuGraphs dataset is similar to the internal datasets used for prior
TPU learned cost models [8, 32], but it exclusively contains graphs
from open source-programs, while the internal datasets also include
production models that we cannot release publicly.

Configurations Generation. Once we have the graphs, we use
the XLA autotuner to generate data samples. The set of configu-
rations being generated depends on how the autotuner explores
the search space. For the layout collections, we ran the autotuner
in two modes. The first mode explores the search space using a
genetic algorithm starting from the default configuration, chosen
by the compiler’s heuristic. Data collected from this mode is labeled
default. The second mode explores the search space by picking ran-
dom candidates. Data collected from this mode is labeled random.
We keep data collected in different modes in separate collections;
the default collection tends to contain configurations that are not
too different from the default, and have similar execution times,
while the random collection includes very different configurations
with very different execution times.

For the tile size tuning, the autotuner first invokes the compiler
to run the graph-level optimizations and obtain fused subgraphs
(kernels). For each subgraph, the autotuner enumerates all possible
tile sizes for the kernel in a random order, limited by a timeout.
Note that the tile size search space is much smaller than the layout
search space, so we can enumerate all possible tile sizes. Therefore,
there is one data collection for tile sizes.

Appendix C describes how we measure the execution time of a
given graph and configuration.

2.2 Dataset Statistics

Table 1 summarizes the details of the different data collections,
where the collection name follows the pattern optimization:source:search.

2.3 Dataset Split

We split the data using 80-10-10 ratio by graphs in each collection.
Splitting data by graphs ensures that graphs in the validation and
test sets do not appear in the training set to evaluate the generaliza-
tion of the model on unseen graphs. The validate and test graphs

https://github.com/google-research-datasets/tpu_graphs
https://github.com/google-research-datasets/tpu_graphs


TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs GLB ’23, August 6, 2023, Long Beach, CA

Table 1: Statistics of TpuGraphs collections. The collection name follows the pattern optimization:source:search. The search

may explore the same configuration multiple times, so the same pair of graph and configuration may appear multiple times

with slightly different execution time from multiple measurements. The total number of samples is thus higher than the

number of unique pairs.

Collection
Core

Avg. Nodes Configs per Graph
Total Graphs

Samples
(Sub) Graphs + Configs

Layout:XLA:Default 78 14,105 (372–43,615) 10,147 (681–71,574) 771,496 1,272,538
Layout:XLA:Random 11,648 (109–99,783) 908,561 1,115,709
Layout:NLP:Default 244 5,659 (876–21,919) 56,534 (9032–90,985) 13,285,415 15,479,038
Layout:NLP:Random 66,089 (8,843–100,001) 16,125,781 16,135,731
Tile:XLA 6,988 40 1,842 12,870,077 12,870,077

stay the same across different XLA collections; the same applies
to NLP collections. We deliberately holdout the target labels of
samples in the test set for competition purposes.

3 LEARNED PERFORMANCE PREDICTION

MODEL

The goal of a learned cost model is to rank the performance of
different configurations of a given graph. This section explains the
baseline models we provide and howwe train them, primarily based
on the TPU learned cost model papers [8, 32].

3.1 Feature Extraction

TpuGraphs provides data in two formats: raw protobuf format and
numpy arrays similar to OGBG format [25]. The autotuner produces
output results in protobuf format. A data pre-processing script
converts data from the protobuf format to the numpy format. The
main function of the data pre-processor is feature extraction. Node
features describe the node’s property, such as output tensor shape,
tensor layout, striding, padding, and operation-specific parameters.
Our feature extraction is minimal. To extract a node feature vector,
we either copy values from various fields in an HLO instruction (a
node in an HLO graph) as they are, or convert categorical values
using one-hot encoding. To convert an unbounded list of numbers
(e.g. tensor shape) to a fixed-size vector, we truncate the list to six
elements and include the summation and/or product of all elements
in the list (e.g., the product of dimension sizes represents the volume
of the tensor). A per-node layout configuration and tile size can
be represented as a nested list with some unbounded dimensions.
Similarly, we truncate these unbounded dimensions to six elements.

We provide code for training a variety of models over the numpy
format. Nonetheless, the raw format can allow researchers to ex-
periment with different feature extractions and measure impacts
on the quality of a learned model.

3.2 Model Architecture

Figure 2 shows the model architecture we use for our baseline
models. Our baseline models are based on a GNN since the input
program is represented as a graph. Node features consist of two
parts as shown in Figure 2. The first part is an opcode id, i.e., type
of tensor operation (such as matrix multiplication). Our baseline
models map an opcode id to an opcode embedding via an embedding
lookup table. The opcode embedding is then concatenated with
the rest of the node features as inputs to a GNN. We combine the

GNN
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Figure 2: Model architecture.

node embeddings produced by the GNN to create the embedding
of the graph using a simple pooling reduction. The resulting graph
embedding is then linearly transformed into the final scalar output
by a feedforward layer. Prior work [32] has studied alternative
models, including LSTM and Transform, and shown that GNNs offer
the best performance. We provide baseline models with GCN [33]
and GraphSAGE [23].

3.3 Loss Functions and Evaluation Metrics

The primary use case of the model is to rank configurations within a
given graph and select top candidates to evaluate on real hardware.
Thus, we can train the model using regression losses (e.g., Mean
Square Error (MSE)) or ranking losses (e.g., ListMLE [54]). A ranking
loss is computed among sample pairs within the same graph in the
same batch, and the losses from different graphs in the batch are
reduced to get the total loss. We use Ordered Pair Accuracy (OPA)
as a validation metric to select the best model checkpoint, and
top-K error as an evaluation metric as they evaluate the quality
of ranking. We define a top-K error to reflect how much slower
the top-K configurations predicted by the model is from the actual
fastest configuration as follows:

Best runtime of the top-k predictions
Best runtime of all configurations

− 1 =
min𝑖∈𝐾 𝑦𝑖
min𝑖∈𝐴 𝑦𝑖

− 1 (1)
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where𝐾 is the top-K predictions,𝐴 is all configurations of the given
graph from the dataset collection, and 𝑦 is the measured time.

3.4 Implementation

Layout model. Our default baseline model is a 3-layer Graph-
SAGE. We concatenate node features and per-node configuration
features as inputs to the GNN. If a node is non-configurable (having
no layout configuration), we use a zero vector as configuration
features. To address the memory issue when training on the full
program graphs in the layout dataset, we apply the Graph Segment
Training (GST) method [8]. GST divides large graphs into smaller
segments. During training, a random segment is chosen for model
updates at each step. This approach allows us to store intermediate
activations for only one segment during backpropagation. The em-
beddings of all segments are merged to generate an embedding for
the original large graph, which is used for prediction. As a result,
the memory usage during training is bounded for each large graph,
irrespective of its size. By default, we use the maximum segment
size of 1,000 nodes and the keep probability 𝑝 = 0.5 for the stale
embedding dropout. We consider MSE and pairwise hinge loss as a
loss function. Model training takes approximately 2–3 days on a
single NVIDIA A100 GPU with 80GB HBM2e Memory. The baseline
models are implemented using the GraphGPS framework [44] on
top of PyTorch 1.10.

Tile size model. For the tile collection, we implement three base-
lines using TensorFlow-2 and TF-GNN: an MLP model and two
GNNs (GraphSAGE and GCN with residual connections). The MLP
model embeds all opcodes, concatenates with node features, sums
across all nodes, then concatenates with kernel configuration fea-
tures, feeding into 3-layer MLP. The GNN variants follow Figure 2.
We experiment with two options to combine the graph-level fea-
tures with the node-level information (orange in the figure): either
late-join or early-join. The first runs the GNN only on node fea-
tures, reduces the node embeddings, and then concatenates with
the graph (configuration) features. As such, multiple configurations
over the same graph share the forward and backward pass. The
second replicates the graph features onto every node. Here, we
group configurations per graph and therefore execute sparse-ops
only once per graph (on cube-tensors rather than matrices). We
consider MSE and ListMLE as a loss function. These models take
a few minutes (MLP), to less than an hour (late-join GNN), to a
couple of hours (early-join GNN), to train on Intel Xeon CPUs.

4 BASELINE EXPERIMENTS

Table 2 reports the average top-K error of the best model on across
programs all the dataset collections. The Layout:XLA:Random and
Layout:NLP:Random are by far the most difficult collections. If we
use the learned cost model to select the top configuration, we will
be on average 24–25% slower than the known optimal configuration.
Even if we consider top 10 candidates, we will still be on average 8–
10% off. This is likely because the configurations from the random
search are very different from each other. Even when the NLP
collection contains only graphs with the transformer architecture,
the best learned model still has relatively low accuracy on the
random search collections.

Table 2: Prediction errors (Eq. 1) of our best baseline model

on different dataset collections. The values of (𝐾1,𝐾2,𝐾3) are
(1, 10, 100) for the layout collections, and (1, 5, 10) for the tile

collection.

Collection Top-𝐾1 Error % Top-𝐾2 Error % Top-𝐾3 Error %

Val Test Val Test Val Test

Layout:XLA:Random 24.3 25.3 6.4 10.4 0.4 1.2
Layout:XLA:Default 1.7 1.6 0.5 0.5 0.1 0.1
Layout:NLP:Random 23.7 24.5 7.4 8.0 1.8 2.7
Layout:NLP:Default 2.3 3.0 0.2 0.2 0.1 0.1
Tile:XLA 10.5 10.8 3.9 3.4 2.7 2.1

Table 3: Prediction errors (%) of differentmodel variants and

training methods on the Layout:XLA:Random collection.

Model Top-1 E Top-10 E Top-100 E

Val Test Val Test Val Test

Best 24.3 25.3 6.4 10.4 0.4 1.2
Full Graph 34.3 39.6 11.5 14.9 0.7 2.6
Small Segment 37.9 47.3 13.3 17.9 1.4 3.5
Topo Partition 27.5 27.1 6.5 10.1 0.6 1.5
Fewer Layers 26.9 28.2 7.9 12.5 0.7 1.7
MSE loss 42.7 53.1 12.6 18.8 1.6 3.8
Random 58.1 90.5 15.7 20.6 1.8 3.6
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Figure 3: Prediction errors (%) of different model variants

on the Tile:XLA collection. Early and Late refer to early-join
and late-join options.

In contrast, Layout:XLA:Default and Layout:NLP:Default are
much easier than the random collections. This is expected because
configurations generated from a genetic algorithm starting from the
default configuration should have relatively similar performance
to the default configuration’s. However, the learned model is not
always accurate on all graphs. If we look at the model’s accuracy
per each graph (program), the top-1 error ranges between 0–9%.

On the Tile:XLA collection, the average top-1 error of the best
model is very similar to the original TPU learned cost model paper’s
[32]. Note that our dataset is not exactly the same as the internal
dataset used in the original paper, but they share a large number of
overlapping graphs.
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A RELATED DATASETS

Table 4 compares related datasets.

ML Program Performance. The TpuGraphs layout collections
provide more than 770x larger graphs on average compared to
TenSet [59], the only existing large-scale dataset on ML program
performance. Our tile size collection is similar to TenSet as the con-
figuration controls the optimization at the kernel (fused subgraph)
level. However, it compliments TenSet nicely as it provides data
points on different hardware. Halide Auto-scheduler [1] releases
their evaluation dataset of Halide programs mainly consisting of
image processing benchmarks with a few ML benchmarks.

Other Program Performance. Beyond ML programs, the perfor-
mance prediction dataset with largest graphs is on database queries
[24], whose graphs are still more than a few orders of magnitudes
smaller than ours. Another popular performance prediction dataset
is BHive [12], consisting of x86 basic blocks sourced from multiple
open source programs, with runtime measurements on different
Intel hardware platforms. However, the basic blocks are quite small,
including four instructions on average. CompilerGym [14] releases
a collection of LLVM IR code datasets that can be evaluated in
their environment. The largest datasets in their collection includes
AnghaBench [15] and CSmith [56]. AnghaBench provides a large
number of relatively small real-world programs. CSmith programs
are large (comparable to ours), but they are randomly generated
programs. Additionally, CompilerGym’s datasets do not come with
performance measurements, so one would have to execute the
programs and configurations in the CompilerGym’s environment
themselves to obtain program execution time.

Program Analysis. Other closely related datasets are on program-
ming tasks. CodeNet [43] is a large dataset to teach AI to code, in
which each code sample is a solution to one of the coding prob-
lems. OBGB-CODE2 [25] is for code summarization, containing
Abstract Syntax Trees obtained from Python functions. TBCNN [40]
releases its dataset on program classification from a pedagogical
programming open judge system. CuBERT [31] uses Python files
extracted from the ETH Py150 dataset [46] for fine-tuning and
uses github_repos dataset under BigQuery’s public-data project
for pre-training. CodeBERT [19] releases its multi-programming-
lingual dataset used for pre-training. Works such as inst2vec [6]
and ProGraML [13] uses datasets of code in LLVM compiler inter-
mediate representation to learn generic code representation for
various program analyses and optimizations.

Other. Apart from code datasets, there are many other graph
datasets. Open Graph Benchmark [25] suite presents graphs that
are used for machine learning tasks such as GNN inference and
training. GAP [5] and Graph Based Benchmark Suite (GBBS) [16]
provide large-scale curated sets of graphs, primarily for evaluating
traditional graph problems. SuiteSparse [34] consists of a wide
variety of sparse matrices, which can be viewed as graphs. Most
of these datasets are for node-level or edge-level prediction tasks.
TpuGraphs is by far one of the largest graph property prediction
datasets. TpuGraphs’ average graph size is comparable to that of
MalNet [20] — the largest scale graph property prediction dataset
to date — while offering 25x more combinations of graphs and

configurations. Other popular graph property prediction datasets
include small molecule [45, 47], bioinformatic [17, 25], and social
network datasets [48, 55].

B EVALUATION RESULTS

B.1 Ablation Study on Layout Collection

Table 3 compares alternative choices in terms of the model architec-
ture and the training method on the Layout:XLA:Random collection.
Our results agree with the results from the prior paper [8] that the
quality of the model improves significantly with the Graph Seg-
ment Training method (Best) over a typical full graph training (Full
Graph), as GST potentially introduces a better hierarchical graph
pooling mechanism that leads to better generalization. Note that
since an A100 GPU has plenty of memory, training on full graphs
does not run out of memory, but one would encounter the prob-
lem when running on a smaller device. Similar to the prior paper,
we also show that the quality of the model drops when the graph
segment size is too small. Here, we compare segment sizes of 100
(Smaller Segment) and 1,000 (Best). Using fewer GNN layers (2 lay-
ers), however, does not affect the accuracy significantly compared
to the best model (3 layers). The choice of a partition algorithm
also does not matter so much, where we compare METIS (Best)
and random cutting from topological sort (Topo Partition) because
our graphs are sparely connected. Another crucial factor is the loss
function, where using pairwise hinge loss (Best) is significantly
better than using Mean Squared Error (MSE), similar to the finding
in the original TPU learned cost model paper [32]. Additionally, we
compare our baseline models with a random model that selects K
candidates at random, and show that all of the learned cost models
are better than random.

B.2 Ablation Study on Tile Size Collection

Figure 3 compares alternative choices on the tile size collection.
Similar to the prior work [32], our results show that combining
configuration features with node features early (early-join) is supe-
rior than combining configuration features with a reduced graph
embedding later (late-join). Similar to the layout collection, using
a ranking loss (ListMLE) is much more effective than using MSE.
Additionally, we compare the choice of a GNN between GraphSAGE
and GCN, and find that GraphSAGE is slightly better than GCN on
this dataset collection. We also provide an MLP baseline without a
GNN, and confirm that a GNN is essential to achieve good accuracy.

C EXECUTION TIME MEASUREMENT

Wemeasure the execution of a compiled binary on a single TPU chip
using random input data. Note that some of the graphs in the layout
collection must be run on multiple TPU chips. However, doing so
is not economically viable for autotuning a large number of models
and generating the dataset. Therefore, the autotuner modifies the
final optimized graph (after all graph-level optimizations) to make
it runnable on a single TPU chip in two ways. First, we replace
each collective communication operation such as all-reduce and all-
gather with a no-op that simply allocates the right amount of output
buffer (with undefined values). This means the measured execution
time ignores the time taken by collective operations. We think this
is reasonable because layout decisions rarely affect the execution
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Table 4: Comparison of TpuGraphs properties with other large-scale graph property prediction datasets. * provide only pro-

grams, but one may use them in CompilerGym [14] environment to obtain performance measurements when compiling with

specific configurations.
†
provides randomly generated programs.

Application Dataset Graphs (+ Configs) Avg. Nodes

ML Program Perf TpuGraphs (Layout) 31,091,253 7,705
TpuGraphs (Tile) 12,870,077 40
TenSet [59] 51,577,248 5–10

Other Program Perf Database [24] 300,000 < 100
BHive [12] 330,018 4
AnghaBench* [15] 1,041,333 62
CSmith*† [56] 530,000 5,845

Program Analysis CodeNet [19] 13,916,868 200–500
OGBG-CODE2 [25] 452,741 125
TBCNN [40] 52,000 190

Cybersecurity MalNet [20] 1,262,024 15,378
Molecule PCBA [45] 437,929 26

MUV [47] 93,087 24
Bioinfomatic DD [17] 1,178 284

OGBG-PPA [25] 158,100 243
Social Network Reddit-T [48] 203,088 24

REDDIT-12K [55] 11,929 391
REDDIT-5K [55] 4,999 509

time of collective operations. The use of random or undefined data
does not affect the execution time of a compute operation, such
as convolution, because the timing does not depend on the input
data. The second modification we perform is to replace dynamic
loop bounds with a fixed loop bounds. Without such replacement,
a dynamic loop bound may depend on random input data, result-
ing in an extremely large loop bound, making the program run

unrealistically slowly. Because of these modifications, our absolute
execution time measurement may be inaccurate in some cases, but
it has been used in production to tune graph-level optimizations
and deliver large speedups on many important models. Therefore,
we believe it is reasonable to use the execution time measured by
the approach outlined here as a prediction target.
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