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ABSTRACT
Despite a surge in interest in GNN development, homogeneity in
benchmarking datasets still presents a fundamental issue to GNN
research. GraphWorld is a recent solution which uses the Stochastic
Block Model (SBM) to generate diverse populations of synthetic
graphs for benchmarking any GNN task. Despite its success, the
SBM imposed fundamental limitations on the kinds of graph struc-
ture GraphWorld could create.

In this work we examine how two additional synthetic graph
generators can improve GraphWorld’s evaluation; LFR, a well-
established model in the graph clustering literature and CABAM, a
recent adaptation of the Barabasi-Albert model tailored for GNN
benchmarking. By integrating these generators, we significantly
expand the coverage of graph space within the GraphWorld frame-
work while preserving key graph properties observed in real-world
networks. To demonstrate their effectiveness, we generate 300,000
graphs to benchmark 11 GNN models on a node classification task.
We find GNN performance variations in response to homophily,
degree distribution and feature signal. Based on these findings, we
classify models by their sensitivity to the new generators under
these properties. Additionally, we release the extensions made to
GraphWorld on the GitHub repository, offering further evaluation
of GNN performance on new graphs.

1 INTRODUCTION
Interest in Graph Neural Networks (GNNs) has surged over the last
decade, with thousands of new GNN variants being introduced [11].
Despite this, a disproportionately small number of datasets from
limited domains [15, 17] are used to benchmark and evaluate new
models. The lack of diversity in benchmarking datasets presents a
major issue in evaluating the empirical performance of GNNs.

One approach to the problem of dataset variety is through the use
of synthetic graph generators. These generators can create diverse
yet controllable graph datasets that cover extensive regions of the
space of all possible graphs. By using synthetic graphs, the problem
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of overfitting can be reduced, as each new dataset collection can
be designed to be as diverse as possible. Furthermore, the field
of Network Science offers a vast array of synthetic graph models
[1, 21] that can approximate important properties observed in real-
world networks and serve as realistic benchmarks. This approach
is employed by GraphWorld [15], a novel methodology and system
that relies on graph generation models to simulate statistically
diverse graphs of arbitrary sizes for benchmarking purposes.

Currently, GraphWorld relies exclusively on the SBM to generate
synthetic graphs. Despite its usefulness, evaluating GNN perfor-
mance using results from a single graph generation model poses
a limitation that goes against the challenges GraphWorld aims to
address.

In this work, we address this limitation by integrating two ad-
ditional graph generation models into the system. We bring an
established benchmark model with strong clustering properties:
LFR, and a class-assortative adaptation of the Barabasi-Albert model:
CABAM. By incorporating LFR and CABAM, we aim to (i) approx-
imate properties observed in real-world networks that the SBM
cannot replicate, and (ii) empirically expand the regions of graph
space that GNNs can be benchmarked on.

Additionally, we conduct node classification experiments using
11 GNN models. We reveal variations in GNN performance in re-
sponse to homophily, degree distribution and feature signal across
graph generators. Through these results, we provide a classifica-
tion of GNN models with respect to their sensitivity to the newly
introduced graph generators. Furthermore, we make the extensions
to GraphWorld publicly available in aid of further analysis on GNN
performance.

We summarise our contributions as follows:
• Extending benchmark datasets. We integrate two addi-
tional graph generators with GraphWorld that (i) exhibit
desirable properties observed in real-world networks and (ii)
cover new regions of graph space for GNN benchmarking.

• Performance classifications. We run benchmarking exper-
iments with 11 GNNmodels and find performance variations
in response to homophily, degree distribution and feature
signal. We classify models by their sensitivity to the new
generators under these properties.

• Code. We release the extensions made to GraphWorld on
the GitHub repository.1

1Our contributions are available at https://github.com/google-research/graphworld

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 GRAPH GENERATION MODELS
For additional graph generation models, we look to the field of
Network Science; where a large number of models have been in-
troduced in the aim of producing synthetic graphs that exhibit
properties observed in real world networks. The properties in focus
being: degree distribution, community structure and homophily.
In this section, we detail the relative strengths of each model with
respect to these properties.

2.1 Stochastic Block Model
The SBM serves as the original graph model used in GraphWorld,
designed to generate graphs that exhibit communities: densely con-
nected and well-separated subsets of nodes. This is accomplished
by introducing a parameterized community distribution and a ma-
trix of edge probabilities. The graph generation process begins by
partitioning the node set based on the community distribution.
Then, edges are assigned randomly to nodes within and between
communities, following the edge probability matrix.

The popularity of the SBM in benchmarking community detec-
tion algorithms has resulted in the development of several variants
aimed at more accurately modelling real-world networks. One such
variant, used in GraphWorld, is the Degree Corrected Stochastic
Block Model (DC-SBM) [10]. The DC-SBM incorporates hetero-
geneity in vertex degrees, making it possible to replicate arbitrary
degree sequences within the model. In GraphWorld, we leverage
this capability by generating artificial degree sequences that follow
arbitrary power law exponents. This allows us to generate SBM
graphs with user-defined ranges of degree distributions.

However, the SBM relies on fixed values defined in its edge prob-
ability matrix, making it unable to precisely replicate a given degree
sequence and generate graphs that adhere to a true power law. This
limitation motivates the choice of LFR and CABAM as complimen-
tary models. Both LFR and CABAM utilize generative processes to
create graphs with natural power law degree distributions.

2.2 CABAM
CABAMgeneratesClass-Assortative graphs via theBarabasi-Albert
(BA)Model. The BA model represents a significant improvement
over traditional graph models by approximating real-world graph
properties through two key concepts of (i) growth and (ii) pref-
erential attachment [1]. These account for the observations that
(i) real-world networks emerge through the continual addition of
nodes and (ii) newly added nodes exhibit a preference for connect-
ing to highly connected nodes.

Following this generative process, the BA model generates scale-
free networks, which are characterized by degree distributions that
conform to a true power law. This forms a fundamental property
observed in numerous real-world networks [6]. CABAM extends
the BAmodel by introducing parameterized community generation,
whilst preserving the original scale-free property. In GraphWorld,
these parameters are used to precisely control the community dis-
tribution of a CABAM graph.

Moreover, CABAM offers the flexibility to determine edge ho-
mophily in various ways: it can be constant, dependent on node de-
gree, or follow any arbitrary function. In GraphWorld, we preserve
this feature and employ similar methods as described for the SBM

Figure 1: NetworkX plots of 512-node graphs from SBM and
the two new node classification dataset generators CABAM
and LFR. We align input parameters to the models, showing
similarities in some high-level properties such as number
of communities, whereas there are differences in low-level
properties such as degree distribution and triangle count.

to create arbitrarily-diverse graph structures under these properties.
Indeed, parameterizing these properties fulfills the requirements of
synthetic graph benchmarking for GNNs. It is widely observed that
community distribution and homophily exhibit significant varia-
tions across real-world networks [16], and these variations can lead
to substantial performance differences among GNNs [19].

The strength of CABAM lies in its ability to generate BA-style
graphs with tune-able homophily and community structure. How-
ever, the degree distributions of CABAM graphs are predetermined
by the described generative process, resulting in a fixed power law
distribution with an exponent of −3. Considering this limitation,
we seek an additional model that can generate scale-free graphs pa-
rameterized in both community structure and degree distribution.

2.3 LFR
LFR refers to the Lancichinetti–Fortunato–Radicchi (LFR) bench-
mark [14]. The LFR benchmark extends synthetic benchmarking
graphs by introducing heterogeneity in both: node degree, similar
to the DC-SBM, and community size. In particular, it allows for the
creation of graphs whose degree and community size distributions
follow power laws with distinct, arbitrary exponents. With the
inclusion of a mixing parameter that determines edge homophily,
LFR provides a complimentary resource to study the effects of ho-
mophily, degree distribution and community structure on GNN
performance.

The inclusion of heterogeneity in both node degree and com-
munity size addresses the need to better approximate real-world
networks, where communities and degrees can exhibit arbitrary,
non-uniform sizes. Since these properties are also known to influ-
ence GNN performance [9], GraphWorld exposes community and
degree distribution parameters to the user, allowing for the gen-
eration of LFR benchmark datasets following arbitrary, randomly
sampled power law distributions. To further capture the unique
community structure, we introduce a feature that allows SBM and
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CABAM graphs to replicate the community structure of a given
LFR graph on the same node count.

In addition to its graph properties, LFR’s well-established popu-
larity as a benchmark for community detection algorithms provides
further motivation. By introducing LFR to the benchmarking of
modern graph learning algorithms like GNNs, where this bench-
mark is unseen, we provide a novel addition to the array of synthetic
graph datasets for GNN benchmarking.

3 EXPERIMENTS
With the unique properties of eachmodel established, in this section
we run novel GraphWorld experiments using these models, with
the aim of answering the following research questions:

(1) Can LFR and CABAM allow GraphWorld to produce new
regions of graph space beyond the SBM?

(2) If so, do the new regions produced by LFR and CABAM show
new differentials between groups of GNN models?

(3) What new insights about GNN models can be learned from
the regions of graph space produced by LFR and CABAM?

3.1 Experimental Design
Using GraphWorld, we generate 100,000 graph samples from each
generator described in the previous section (SBM, CABAM and
LFR). Whilst we discussed a subset of the parameters for each
generator earlier, in Appendix A, we provide a full description of
all the parameters for each generator along with their respective
input values. These tables provide enough information for the same
GraphWorld experiments to be readily reproduced.

In order to study the global effects of graph properties such as
homophily and degree distribution on GNN performance, we match
the inputs of parameters that perform similar functions across gen-
erators. This is possible due to the selection of graph models that
share similar controls over such properties. For example, following
the discussion on the parameterization of degree distribution on
SBM and LFR graphs, we ensure that graph samples across all gener-
ators receive random values from similar ranges in their respective
degree sequence generation parameters. By matching similar pa-
rameters across generators, we ensure a fair global comparison of
GNN performance across different graph generators.

Furthermore, by varying parameter values across wide ranges,
we can conduct local analyses to examine the specific effects of
individual parameters within each generator on GNN performance.
GraphWorld computes metrics of each sampled graph to then quan-
tify the effects of such parameters in a unified manner to answer
research questions 1 and 2. For example, whilst the control of ho-
mophily through input parameters may vary across generators,
we use the edge homogeneity statistic provided in GraphWorld’s
output to measure the homophily of each graph after the graph
generation process.

Following the experimental framework outlined in the Graph-
World paper [15], we use the generated graph samples to bench-
mark 11 GNN models: ARMA [2], APPNP [7], FiLM [4], GAT
[20], GATv2 [5], GCN [13], GIN [23], GraphSAGE [8], SGC [22],
SuperGAT [12], Transformer [18] and 2 baselines: Multi-Layer
Perceptron, Personalized PageRank [3], on a node classification
task.

Figure 2: Kernel Density Estimates of SBM, CABAM and LFR
graphs on variousmetrics. Our results show that CABAMand
LFR graphs exist in non-overlapping regions of graph space
when compared to the SBM on metrics measuring degree
sequence and homophily.

3.2 Properties of Graph Statistics
To answer research question 1 we compute kernel density estimate
plots comparing the generated graph samples on 6 metrics provided
in GraphWorld’s output. We use the metrics described below to
study the distribution of graphs on the following properties:

• Degree Distribution: Power law estimate and degree gini
coefficient

• Homophily: Edge homogeneity
• Community Structure:Average clustering coefficient (avg_cc),
simpsons community size and the number of triangles

Insights. Our results in Figure 2 show that CABAM and LFR
indeed cover new regions of graph space beyond the SBM. Specifi-
cally, CABAM and LFR graphs exhibit degree distributions vastly
different from the SBM. For CABAM this is characterized by the
large non-overlapping spikes in its power law estimate distribu-
tions, whilst for LFR we see a much wider range of power laws
compared to either generator.

Additionally, the edge homogeneity distributions show that
CABAM and LFR graphs exhibit a wider range of homophily over
SBM graphs, particularly in the lower homophily regions. In sum-
mary, our results show that CABAM and LFR widen the scope of
graphs we can generate by introducing unique degree distributions
and wider ranges of homophily.
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Figure 3: ROC-AUC of models in GraphWorld. Our results
show that GNNmodels form two groups with respect to para-
metric graph generators: sensitive (GIN, GCN, GAT, GATv2,
SuperGAT, SGC), and insensitive (FiLM, Transformer, Graph-
SAGE, ARMA and APPNP).

3.3 GNN Benchmarking Results
To answer research questions 2 and 3, we look at the performance
of GNNs on each of the 300,000 graph samples from the Graph-
World benchmarking experiments. We measure the performance
of a given model with the ROC-AUC-One-Vs-Rest score and plot
this against the edge homogeneity, power law estimate and feature
center distance (feature signal) of each graph. Thus for each GNN
model we have 3 curves, representing the performance on SBM,
CABAM and LFR graphs.

In Figure 3, we take the performance curves of each GNN model
and group them into 2 columns, one for each group of GNN models
exhibiting similar performance. We have each row corresponding
to a graph metric and each column corresponding to a group of
GNN models.

Insights. In Figure 3, our results demonstrate the ability to clas-
sify GNN models based on their sensitivity to the generators used
for benchmarking. We observe that certain groups of GNN models
exhibit variations in their performance across SBM, CABAM, and
LFR graphs, indicating their sensitivity to the specific properties
introduced by these generators. These models fall into the para-
metric generator-sensitive group, reflecting the larger variation in
their performance across different graph models. This variation

arises due to the inclusion of LFR and CABAM graphs, which cover
previously unexplored regions of the graph space.

However, our analysis also reveals the existence of a parametric
generator-insensitive group of GNN models. These models demon-
strate minimal variation in their performance across the SBM,
CABAM, and LFR graphs, suggesting that they are robust to the
specific characteristics introduced by these generators. Despite the
introduction of new graph models, these GNN models exhibit con-
sistent and stable performance, highlighting their insensitivity to
the variations in graph structure generated by the different models.

The observed behavior can be attributed to the characteristics of
the GNNmodels within the parametric generator-insensitive group.
These models tend to be less sensitive to the local graph structure
and instead focus on more global information. For example, models
such as APPNP, GraphSAGE, and Transformer employ smoothing
techniques, which allow them to mitigate the influence of specific
graph structures and instead capture more general patterns in the
data.

Furthermore, the parametric generator-insensitive models ex-
hibit a higher degree of reliance on node features. This is evident
from the edge homogeneity plots, which indicate that these models
achieve significantly better performance than the sensitive group
on graphs with lower levels of homophily. This suggests that these
models are more adept at leveraging the available node features to
make accurate predictions. However, it is worth noting that these
models also experience a larger drop in performance on graphs with
low feature signal, indicating that the quality and informativeness
of the features play a crucial role in their performance.

In summary, our findings highlight the presence of new differen-
tials between groups of GNN models when exploring the additional
regions of graph space covered by LFR and CABAM.

4 CONCLUSION
In this work, we examined how two additional synthetic graph gen-
erators, LFR and CABAM, could improve the evaluation of GNN
performance in GraphWorld. We established the unique proper-
ties of each generator and generated 300,000 graph samples which
showed that the newly introduced models cover new regions of
graph space beyond the SBM. We used these samples to benchmark
11 GNN models and found variations in the sensitivity of GNN
models in response to the new graph generators. We classified mod-
els as being either parametric generator-sensitive or parametric
generator-insensitive. The parametric generator-insensitive mod-
els, characterized by their focus on global information and reliance
on node features, exhibit distinct performance patterns compared
to the sensitive group. Understanding these differences provides
valuable insights into the behavior and strengths of different GNN
models across a range of graph structures. Our work addresses
the critical issue of dataset homogeneity in GNN research and of-
fers an advancement in generating diverse and realistic synthetic
benchmarks. By making the extensions to GraphWorld publicly
available and providing the parameter sets used to conduct these ex-
periments, we open doors for further investigation into the factors
affecting GNN performance.



Examining the Effects of Degree Distribution and Homophily in Graph Learning Models KDD ADS ’23, August 06–15,2023, Long Beach, NY

REFERENCES
[1] Albert-László Barabási and Márton Pósfai. 2016. Network science. Cambridge

University Press, Cambridge. http://barabasi.com/networksciencebook/
[2] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. 2021.

Graph Neural Networks with Convolutional ARMA Filters. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2021), 1–1. https://doi.org/10.1109/
tpami.2021.3054830

[3] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine. Computer Networks 30 (1998), 107–117. http://www-
db.stanford.edu/~backrub/google.html

[4] Marc Brockschmidt. 2020. GNN-FiLM: Graph Neural Networks with Feature-wise
Linear Modulation. arXiv:1906.12192 [cs.LG]

[5] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Atten-
tion Networks? arXiv:2105.14491 [cs.LG]

[6] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. 2009. Power-Law
Distributions in Empirical Data. SIAM Rev. 51, 4 (nov 2009), 661–703. https:
//doi.org/10.1137/070710111

[7] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2022.
Predict then Propagate: Graph Neural Networks meet Personalized PageRank.
arXiv:1810.05997 [cs.LG]

[8] William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation
Learning on Large Graphs. arXiv:1706.02216 [cs.SI]

[9] Hussain Hussain, Tomislav Duricic, Elisabeth Lex, Roman Kern, and Denis Helic.
2021. On the Impact of Communities on Semi-supervised Classification Us-
ing Graph Neural Networks. In Studies in Computational Intelligence. Springer
International Publishing, 15–26. https://doi.org/10.1007/978-3-030-65351-4_2

[10] Brian Karrer and M. E. J. Newman. 2011. Stochastic blockmodels and community
structure in networks. Physical Review E 83, 1 (jan 2011). https://doi.org/10.1103/
physreve.83.016107

[11] Abdalsamad Keramatfar, Mohadeseh Rafiee, and Hossein Amirkhani. 2022. Graph
Neural Networks: a bibliometrics overview. arXiv:2201.01188 [cs.LG]

[12] Dongkwan Kim and Alice Oh. 2022. How to Find Your Friendly Neighborhood:
Graph Attention Design with Self-Supervision. arXiv:2204.04879 [cs.LG]

[13] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv:1609.02907 [cs.LG]

[14] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. 2008. Benchmark
graphs for testing community detection algorithms. Physical Review E 78, 4 (oct
2008). https://doi.org/10.1103/physreve.78.046110

[15] John Palowitch, Anton Tsitsulin, BrandonMayer, and Bryan Perozzi. 2022. Graph-
World. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. ACM. https://doi.org/10.1145/3534678.3539203

[16] Neil Shah. 2020. Scale-Free, Attributed and Class-Assortative Graph Generation to
Facilitate Introspection of Graph Neural Networks. In KDD Mining and Learning
with Graphs.

[17] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[18] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and
Yu Sun. 2021. Masked Label Prediction: Unified Message Passing Model for
Semi-Supervised Classification. arXiv:2009.03509 [cs.LG]

[19] Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. 2021.
Breaking the Limit of Graph Neural Networks by Improving the Assortativity
of Graphs with Local Mixing Patterns. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. ACM. https://doi.org/10.
1145/3447548.3467373

[20] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks.
arXiv:1710.10903 [stat.ML]

[21] D.J. Watts. 1999. Small Worlds: the dynamics of networks between order and
randomness. Princeton Univ Pr.

[22] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr. au2, Christopher Fifty, Tao
Yu, and Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks.
arXiv:1902.07153 [cs.LG]

[23] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks? arXiv:1810.00826 [cs.LG]

A GENERATOR PARAMETERS

http://barabasi.com/networksciencebook/
https://doi.org/10.1109/tpami.2021.3054830
https://doi.org/10.1109/tpami.2021.3054830
http://www-db.stanford.edu/~backrub/google.html
http://www-db.stanford.edu/~backrub/google.html
https://arxiv.org/abs/1906.12192
https://arxiv.org/abs/2105.14491
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://arxiv.org/abs/1810.05997
https://arxiv.org/abs/1706.02216
https://doi.org/10.1007/978-3-030-65351-4_2
https://doi.org/10.1103/physreve.83.016107
https://doi.org/10.1103/physreve.83.016107
https://arxiv.org/abs/2201.01188
https://arxiv.org/abs/2204.04879
https://arxiv.org/abs/1609.02907
https://doi.org/10.1103/physreve.78.046110
https://doi.org/10.1145/3534678.3539203
https://arxiv.org/abs/2009.03509
https://doi.org/10.1145/3447548.3467373
https://doi.org/10.1145/3447548.3467373
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1902.07153
https://arxiv.org/abs/1810.00826


KDD ADS ’23, August 06–15,2023, Long Beach, NY Mustafa Yasir, John Palowitch, Anton Tsitsulin, Long Tran-Thanh, and Bryan Perozzi

Table 1: SBM

Parameter Name Description Values

nvertex Number of vertices [1028,4096]
avg. degree Average expected node degree [1,32]
min degree Minimum degree [2,20]
𝑝/𝑞 ratio Ratio of intra-community to inter-community edge probabilities [1,16]
exponent Value of the power law exponent used to generate expected node degrees [0.2,3.0]
num clusters Number of communities [2,10]
cluster size slope Slope of cluster sizes when index-ordered by size [0.0,1.0]
feature center distance Variance of feature cluster centers, generated from a multivariate Normal [0.0,2.0]
feature dim Dimension of feature vector assigned to every node [16,16]

Table 2: CABAM

Parameter Name Description Values

nvertex Number of vertices [1028,4096]
min degree Minimum degree [2,20]
inter link strength Probability of a node forming an intra-community edge [0.5,1]
num clusters Number of communities [2,10]
cluster size slope Slope of cluster sizes when index-ordered by size [0.0,1.0]
feature center distance Variance of feature cluster centers, generated from a multivariate Normal [0.0,2.0]
feature dim Dimension of feature vector assigned to every node [16,16]

Table 3: LFR

Parameter Name Description Values

nvertex Number of vertices [1028,4096]
avg. degree Average node degree [1,32]
max degree proportion Minimum degree, as a proportion of the node count [2,20]
mixing param Ratio of total number of inter to intra community edges [0.0,1.0]
min community size proportion Minimum size of community, as a proportion of the node count [0.05, 0.0825]
max community size proportion Maximum size of community, as a proportion of the node count [0.25,0.33]
community exponent Value of the power law exponent used to generate community sizes [1.0,2.0]
exponent Value of the power law exponent used to generate node degrees [2.0,3.0]
num tries Number of attempts at simulating an LFR graph until success [20,20]
feature center distance Variance of feature cluster centers, generated from a multivariate Normal [0.0,2.0]
feature dim Dimension of feature vector assigned to every node [16,16]
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